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1. Introduction

Anthropogenic climate change will continue to happen in the future. This poses a multitude of risks for
humans and other biota, in particular related to changes in the hydrological cycle. Risk assessment and thus
identification of climate change adaptation measures is severely hampered by the considerable epistemic
uncertainty about how climate and climate-related variables, including those describing the freshwater
system, will develop. Where future human decisions are involved, uncertainty is deep (D6ll and Romero-
Lankao 2017). Deep uncertainty is best taken into account by generating plausible alternative scenarios. A
scenario describes a potential future; it is not a prediction of what the future will be but rather a description
of how the future might unfold. Scenarios cannot be characterized by a probability but should be equally
plausible. An example for scenarios relevant for climate change assessments are the four greenhouse gas
emissions scenarios (Representative Concentration Pathways or RCPs, Van Vuuren et al. 2011). There is only
medium to deep uncertainty in our knowledge about the complex climate-water system (D6ll and Romero-
Lankao 2017), which makes it possible to quantify the uncertainty by probabilities of occurrence of certain
futures at least approximately. It is recommended to describe future climate-change related developments -
separately for each RCP - in a probabilistic manner. It is not informative to only provide one deterministic
future under each emissions scenario, as it is not possible to predict, with a reasonable precision, the impact
of a certain greenhouse gas emissions scenario on hydrological processes. Thus, for example, the hazard that
domestic or irrigation water supply will be exposed to due to climate change can only be quantified with a
large uncertainty. Consequently, decision making in the context of climate change is decision making under
uncertainty (Cobb and Thompson, 2012; Jones et al. 2014). In particular, decision makers or stakeholders
that are tasked with identifying and prioritizing suitable measures for adapting to climate change should fully
embrace the knowledge about potential future hazards and their uncertainties, and integrate this knowledge
in their decision process (Haasnoot et al. 2013; Dilling et al. 2015; D6ll and Romero-Lankao 2017).

How large a climate change risk is depends 1) on the magnitude of the climate change hazard that is caused
by potential changes of physical processes such as precipitation or groundwater recharge, 2) on the exposure
of assets, humans and other biota to these changes and 3) on the specific vulnerability of the exposed system
(IPCC 2014). The risk can also be determined by the probability of the hazard multiplied by the potential
negative impact that would result if the hazard actually materializes (IPCC 2014), e.g. if groundwater recharge
would actually decrease by 20% until 2050. Assuming a certain RCP, the probability distribution of the
freshwater-related climate change hazard depends on the uncertainty of computing - by climate models -,
the impact of greenhouse gas emissions scenarios on the future development of climate variables. Another
source of uncertainty are the hydrological models that are necessary to translate climatic changes into
hydrological changes. It is therefore state-of-the-art to rely on so-called multi-model ensembles (MME) for
guantifying - for individuals RCPs - potential future changes in variables that are relevant for climate change
risk assessments such as groundwater recharge or crop yield (D6ll et al. 2015). These ensembles consist of
the output of various models that are capable of computing the variable of interest. Each model has been
driven by the output of a number of global climate models (general circulation models, GCMs) such that the
models quantify the potential climate change hazards. Assuming that each model combination, i.e. each
ensemble member, is equally likely, the multi-model ensemble can be used to roughly estimate the likelihood
of certain future changes of the variable of interest. Given the uncertainties of the models, the resulting
probability distribution is again uncertain (Doll et al. 2015), and MMEs may still underestimate the actual
uncertainty, for example, if only a small number of GCMs were included.
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In this handbook, we inform about provisioning and utilization of the MME-based global-scale quantitative
estimates of freshwater-related hazards of climate change that are freely available on the CO-MICC portal
(www.co-micc.eu). We refer to the corresponding methods as PUNI (Providing and Utilizing eNsemble
Information) methods, which encompass appropriate ways for characterizing and dealing with the
uncertainty of future hazards. A major goal regarding information provisioning is to represent uncertainty
guantitatively in a way that is both scientifically correct and meaningful to the diverse users of the hazard
information. A major goal regarding the utilization of the information is to identify approaches for integrating
information with quantified uncertainty into (participatory) assessments of water-related climate change
risks and adaptation options, also considering the rough representation of local conditions by global
hydrological models (GHMs).

Ideally, local to regional climate change (CC) risk assessment would be supported by MMEs consisting of a
number of local or regional hydrological models. If such alternative hydrological models are not available, as
is the case almost everywhere around the globe, utilization of the MME output from GHMs is recommended.
Even though a local hydrological model, which is calibrated to observations, is very likely to simulate observed
historic water flows and storages better than any GHM, it is unlikely that such a model is capable of simulating
future changes of water flows and storages with a low uncertainty. Calibration to observations does not
ensure that the hydrological model is suitable for translating changes of climate variables such as
precipitation and temperature into changes of runoff. For example, the choice of algorithm for computing
potential evapotranspiration may strongly affect potential and thus actual evapotranspiration. Equally
important, local hydrological models generally do not take into account the impact of changing atmospheric
CO; concentrations as well as of climatic changes on vegetation dynamics and thus actual evapotranspiration,
while some GHMs can do this. Therefore, to understand the range of plausible future changes at the local to
regional scale, it is not sufficient to drive a local or regional hydrological model with the output of a number
of global or regional climate models. To inform local to regional climate change risk assessments in the
framework of climate change adaptation efforts, consequently, utilization of the MME of GHM output as
provided by the CO-MICC portal is recommended. However, low spatial resolution (50 km) as well as
insufficient representation of local conditions are an impediment to using CO-MICC portal data directly, and
suitable methods for combining CO-MICC MME data with local data need to be applied.

In Chapter 2 of this handbook, we report how the MME was generated and how decisions about the
optimized provisioning of model results on the portal were made in a co-design approach with experts and
stakeholders. We also present the list of selected hazard indicators as well as their rationale and potential
use for local to regional climate change risk assessment. In Chapter 3, methods for utilizing the information
and data available on the CO-MICC portal are described. We distinguish utilization of the information for only
small regions of the globe as required to support local to regional climate change risk assessments (Chapter
3.1) from utilization of the complete global-scale information by companies with globally spread production
sites and supply chains (Chapter 3.2). We discuss in particular how the provided information on the
uncertainty of the hazards can be used for decision-making.
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2. Methods for providing uncertain multi-model based information on
freshwater-related hazards of climate change

2.1 Generation of the multi-model ensemble

MMEs for estimating potential impacts of climate change have been generated in the framework of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP) initiative (www.isimip.org). In the ISIMIP2b
simulation round, a number of impact models (e.g. hydrological models among others) are driven by the bias-
adjusted output of GCMs following a detailed simulation protocol (Frieler et al. 2017). For these outputs,
each GCM had previously been run for a number of greenhouse gas emissions scenarios (RCP2.6, RCP4.5,
RCP6.0 and RCP8.5). RCP2.6 represents an emissions scenario that is likely to constrain global warming to
about 2 °C as compared to the pre-industrial period, while the RCP8.5 emissions lead to an approximate
global warming of 4 °C by the end of the 21st century. RCP4.5 and RCP6.0 represent intermediate future
emissions and thus intermediate degrees of climate change.

The CO-MICC portal provides information on potential future changes of a large number of hydrological
variables under these four emissions scenarios (RCPs). These changes were computed by adapting the
ISIMIP2b protocol and by using the available ISIMIP2b bias-adjusted output of four GCMs (see Appendix A)
to drive three global hydrological models (GHMs): WaterGAP (Miller Schmied et al. 2021), LPJmL (Jdgermeyr
et al. 2015) and CWatM (Burek et al. 2020). All three GHMs provide their output at a spatial resolution of 0.5°
geographical latitude by 0.5° geographical longitude, corresponding to a grid cell size of 55 km by 55 km at
the equator. They take into account the impact of human water abstractions and man-made reservoirs on
the natural water flows and storages on the continents. Only time series of monthly model output variables
are taken into account for the CO-MICC portal, mainly due to the larger uncertainty of daily values. All GHMs
provided output for the time period 1981-2099, with water abstractions and reservoirs held constant after
2005.

LPJmL differs from both WaterGAP and CWatM in that it can directly simulate the impact of changing
atmospheric CO, concentrations as well as of climatic changes on evapotranspiration as it simulates
vegetation processes such as the effect of CO, on photosynthesis, closure of stomata or plant growth.
However, simulation of the vegetation response is uncertain, resulting in considerably varying effects on
runoff and groundwater recharge among various GHMs that all simulate the vegetation response (e.g.
Reinecke et al. 2021). Therefore, it is appropriate to include a range of hydrological models in the ensemble
differing in their ability to simulate the vegetation response or in other process integrations, e.g. in the way
potential evapotranspiration or runoff generation are computed, such as WaterGAP and CWatM. To cover a
broader and more realistic uncertainty range, the CO-MICC MME does not only encompass the simulations
of the three GHMs in their standard configuration but also simulations for each with alternative model
variants where a key mechanism parameterization is altered. In the case of LPJmL, a run with an assumed
constant atmospheric CO, concentration was added. For WaterGAP and CWatM, non-standard model runs
were performed using an approach to mimic the vegetation response of global climate models with dynamic
vegetation representations by altering the potential evapotranspiration mechanism (Milly and Dunne 2016;
Yang et al. 2019; Peiris and Ddll, in preparation). Thus, for each of the four RCPs, 4 (GCMs) x 3 (GHMs) x 2
(GHM variants) = 24 ensemble members are available.

As an example, we consider the relative change in groundwater recharge in the period around 2085: for each
ensemble member, time series of monthly values of groundwater recharge between 1981-2099 are
computed for 0.5° grid cells, which are then temporally aggregated to 30-year averages for the two time

6
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periods 1981-2010 and 2070-2099, with 1981-2010 being the reference period. Finally, the percent change
of groundwater recharge between the reference period and the future period is computed for each ensemble
member. Per RCP, this results in 24 equally likely potential changes of groundwater recharge in a grid cell.
The probability distribution of relative groundwater recharge changes can then be quantified from this
ensemble, for example, by its percentiles such as the median/50™ percentile (which may experience, e.g. a
15% decrease) or the P10/10%™ percentile value that is exceeded by approximately 90% of the 24 ensemble
members (which simultaneously may change differently, e.g. by -30%).

2.2 Co-design

For CO-MICC a data and knowledge portal is co-developed with stakeholders based on these global-scale
multi-model simulations of hydrological variables. The aim of the co-design is finding out how to make the
CO-MICC MME data optimally utilizable for climate change risk assessment and adaptation at different scales.
In a participatory manner, we focused on (1) eliciting the relevant hydrological hazard indicators, (2)
representing their uncertainty quantitatively in a way that is both scientifically correct and utilizable to the
diverse users of the hazard information, and (3) creating guidance on how to integrate the uncertain global
information into regional-scale assessments of water-related climate change risk and adaptation
assessments. Adapting the tandem framework of the Swedish Environmental Institute (SEl, Daniels et al.,
2019), participatory stakeholder dialogues including eleven workshops with stakeholders from focus regions
in Europe and Northern Africa, and finally with globally-acting companies serve to iteratively integrate the
various experiences, needs and expectations of various regions and users. Participants included local
researchers, experts from meteorological services and decision-makers from regional and national
hydrological administrations (water supply, irrigation, basin management). Co-development was structured
through presentation, questionnaires and small discussion groups.

Together, we co-produced 15 relevant model output variables, eliciting the time scales of interest and
appropriate end-user products encompassing static and dynamically generated information for a data portal
(see Chapters 2.3 and 2.4). The global-scale information products include interactive maps, diagrams, time
series graphs and suitably co-developed statistics, with appropriate visualization of uncertainty, for which we
provided example diagrams and collected valuable feedback in breakout groups. In complement, the
knowledge tool provides transparent meta-information, tutorials and handbook guidelines to utilize the
provided information in models of local participatory risk assessments.

Specific feature elements stem from the stakeholder dialogues and include, for example, explanations on the
portal and the importance of transparently and clearly communicating the meaning and calculation basis of
provided data in an understandable way. Both mouse-hover tip boxes and a glossary are part of the
developed portal. Further features are the spatial aggregations for basin and country level, user selectable
seasons, and download options.

2.3 Indicator list

The final list of indicators from the process is shown in Table 1, and structured into 15 variables and their
specific indicators. On the CO-MICC data portal, we provide for most indicators in the table:

1. relative change (i.e. percent change) in a specified 30-year future time period as compared to the
reference period 1981—2010 (for all ensemble members and emissions scenarios RCP)

2. absolute change, positive or negative (for all ensemble members and emissions scenarios RCP)

3. one reference value: median of ensemble members for the reference period 1981—2010
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In general, relative changes can be computed more reliably than absolute changes and should therefore be
applied for CC risk assessment. Only if relative changes are not available in a cell (because if the ensemble
member value for the reference period is zero or very small, relative changes are not sensible, and the cell
will be greyed-out), absolute changes should be considered. Simulated changes can be combined with the
reference value to obtain a rough estimate of the indicator in future time periods. Preferably, a local estimate
of the indicator during the reference period is used to obtain an estimate for the future.

Values are provided for all land areas of the globe (except Greenland and Antarctica).

The list in Table 1 also contains co-developed indications on the rationale and potential use of the indicators
for local to regional climate change risk assessment.

Table 1: Indicators for different hydrological variables computed by global hydrological models for 30-year
periods. They are provided at annual time scale, for the four seasons or for each calendar month. CC
abbreviates climate change.

Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
1. Blue Annual Mean R: Total renewable water resources and the part of
water the precipitation that does not evapotranspire.
production Maximum amount of water available for
BWP management.
(Total U: Simulated change can be applied to local
runoff from estimate of renewable water resources e.g. to
soil and compare to water demand or to serve as input to a
surface local water allocation/supply model.
water Annual High R: The maximum amount of water available for
bodies) (Q10) management that is exceeded in only 1 out of 10
years, i.e. in a wet year.
Annual Low R: The maximum amount of water available for
(Q90) management that is exceeded in 9 out of 10 years,
i.e.in a dry year.
Year-to-year R: The higher the standard deviation of annual
variability: BWP, the more difficult it is to reliably fulfil water
Standard demand (which is relatively constant from year to
deviation year or even higher in years with low BWP).
Year-to-year R: Coefficient of variation = standard
variability: deviation/mean
Coefficient of If both the standard deviation and the mean
variation increase, the coefficient of variation may remain
constant.
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Variable

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

2.
Streamflow

Mean

R: Simulated streamflow is, in contrast to BWP,
affected by upstream human water use and man-
made reservoirs (in most GHMs). Estimates for
years after 2005 assume that water use and
reservoirs remain at the 2005 level.

U: Streamflow indicators based on annual
streamflow (mean, annual high, annual low,
interannual variability indicators) can be
simulated more reliably by GHMs than indicators
based on monthly or daily simulation results. This
is particularly true for highly managed basins with
reservoirs and high water use or even water
transfers.

U: To estimate the CC impact on reservoir inflow
or the ability to transfer water, change of mean
annual streamflow can be used. However, it is
likely that streamflow downstream of significant
water use, reservoirs or water transfers cannot be
reliably computed by GHMs. In these cases, it is
recommended to use either naturalized
streamflow indicators at an upstream grid cell that
is not affected by human impacts or BWP
indicators as input to local risk assessments.

Annual High
(Q10)

R: Annual streamflow that is exceeded in only 1
out of 10 years, i.e. streamflow in a wet year.

Annual Low

(Q90)

R: Annual streamflow that is exceeded in 9 out of
10 years, i.e. streamflow in a dry year.

Monthly High
(Q10)

R: Monthly streamflow that is exceeded in only 1
out of 10 months (i.e. in 36 out of the 360 months
of the 30-year period); a statistical high flow value.
It is expected that monthly Q10 streamflow can be
simulated reasonably well by GHMs.

Monthly Low
(Q90)

R: Monthly streamflow that is exceeded 9 out of 10
months (i.e. streamflow is lower only in 36 out of
the 360 months of the 30-year period); a statistical
low flow value.

U: It is expected that monthly Q90 streamflow can
be simulated reasonably well by GHMs.

Year-to-year
variability:
Standard
deviation

R: The higher the standard deviation of annual
streamflow, the more difficult it is to reliably fulfil
water demand (which is relatively constant from
year to year or even higher in years with low
streamflow).

Year-to-year
variability:
Coefficient of
variation

See standard deviation
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Calendar month
with highest
mean monthly
flow

Only reference value and absolute change
provided.

R: Shift (in months: e.g. a shift by 1.7 month)
indicates change in streamflow seasonality.
U: To modify seasonality of locally quantified
streamflow values.

Calendar month
with lowest
mean monthly
flow

Only reference value and absolute change
provided.

R: Shift (in months) indicates change in streamflow
seasonality.

U: To modify seasonality of locally quantified
streamflow values.

Seasonal Mean of R: Mean streamflow in March, April and May.
1 March to May  U: Particularly in highly managed basins, seasonal
2 June to August streamflow simulated by GHMs may strongly differ
3 September to  from actual values
November
4 December to
February
Calendar Mean of R: Mean streamflow in the calendar month
month 1 January January.
2 February U: Particularly in highly managed basins, monthly
3 March mean streamflow simulated by GHMs may strongly
4 April differ from actual values, even more than seasonal
5 May values.
6 June
7 July
8 August
9 September
10 October
11 November
12 December
Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
3. Annual Mean R: Streamflow simulated under the assumption
Naturalized that there are neither man-made reservoirs nor
Streamflow human water use. Simulated changes of

naturalized streamflow are expected to differ
insignificantly from simulated changes of
(anthropogenically affected) streamflow except in
highly managed basins.

U: In highly managed basins, it is recommended to
use either naturalized streamflow indicators at an
upstream grid cell that is not affected by human

10
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Seasonal

Calendar
month

CO-MICC (g2

impacts or BWP indicators as input to local risk

assessments.

Annual High
(Q10)

see streamflow

Annual Low

(Q90)

see streamflow

Monthly High
(Q10)

see streamflow

Monthly Low
(Q90)

see streamflow

(7-day low flow)

see streamflow

Year-to-year
variability:
Standard
deviation

see streamflow

Year-to-year
variability:
Coefficient of
variation

see streamflow

Shift in high
flow month

see streamflow

Shift in low flow
month

see streamflow

Mean of

1 March to May
2 June to August
3 September to
November

4 December to
February

see streamflow

Mean of

1 January
2 February
3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October

see streamflow

11
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Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)

4. PET Annual Mean R: Potential evapotranspiration, i.e.
evapotranspiration occurring in the cases of open
water and very wet soils.

U: Simulated change can be applied to local
estimate of reservoir evaporation or PET
estimates in models of irrigation water
requirements.
Year-to-year
variability:
Standard
deviation
Year-to-year
variability:
Coefficient of
variation
PET /Precipitation R: Aridity indicator (the higher, the more arid)
Seasonal Mean of R: Mean streamflow in March, April and May.
1 March to May 2  U: Particularly in highly managed basins,
June to August 3 seasonal streamflow simulated by GHMs may
September to strongly differ from actual values
November
4 December to
February
Calendar Mean of R: Mean streamflow in the calendar month
month 1 January January.
2 February U: Particularly in highly managed basins, monthly
3 March mean streamflow simulated by GHMs may
4 April strongly differ from actual values, even more
5 May than seasonal values.
6 June
7 July
8 August
9 September
10 October

11 November
12 December

12
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Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

5.AET Annual

Seasonal

Calendar
month

Mean

R: actual evapotranspiration from canopy, soil
and surface water bodies

Year-to-year
variability:
Standard
deviation

Year-to-year
variability:
Coefficient of
variation

AET /Precipitation

R: Fraction of precipitation that is actually
evapotranspired

Mean of

1 March to May 2
June to August 3
September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

6. AET/PET Annual

Mean

Note: AET and PET are computed as a mean over
every grid cell which may consist of both surface
water bodies and land. Therefore, the ratio of
actual over potential evapotranspiration is not a
measure of water stress of vegetation.

13
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Seasonal

Calendar
month

Year-to-year
variability:
Standard
deviation

Year-to-year
variability:
Coefficient of
variation

Mean of

1 March to May
2 June to August
3 September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

7. Annual
Groundwater
recharge

Mean

R: Renewable groundwater resources, i.e. the
maximum amount of groundwater that could be
used without causing a continuing loss of
groundwater storage and groundwater table
decline.

U: Percent change can be applied to local
estimate of groundwater recharge from soil

14
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Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

8. Soil Annual
moisture
saturation

Seasonal

Calendar
month

Mean

R: soil water content /maximum soil water content, a
measure of water stress for vegetation.

Mean of

1 March to May
2 June to August

3 September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

9. Snow Annual
storage

Seasonal

Mean Storage

U: Mean annual snow water storage is not relevant
for water supply; rather, change in snow storage at
the end of the snow season is relevant. Seasonal or
calendar month snow storage should be used.

Number of
months with
snow

Mean of

1 March to May
2 June to August

3 September to
November

4 December to
February
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Calendar Mean of
month 1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September
10 October
11 November
12 December
Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
10. Net Annual Mean R: The mean amount of water that is additionally
irrigation evapotranspired due to irrigation if enough water
requirement can be supplied to allow for optimal irrigation.
NIR Different GHMs assume different crops and
growing periods.
U: Simulated change can be combined with
current, local estimates of NIR.
Annual High R: Annual NIR that is exceeded in only 1 out of 10
(NIR10) years, i.e. NIR in a dry year.
Annual Low R: Annual NIR that is exceeded in 9 out of 10
(NIR90) years, i.e. NIR in a wet year.
Year-to-year R: An increase in standard deviation is likely to
variability: make a reliable water supply more difficult.
Standard
deviation
Year-to-year See standard deviation
variability:
Coefficient of
variation
Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
11. Annual Mean
Temperature

16
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Seasonal

Calendar
month

CO-MICC (g2

Mean of

1 March to May
2 June to August
3 September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable

Time
scale

Indicator

Rationale (R) and potential use for local to

regional CC risk assessment (U)

12.
Precipitation

Annual

Mean

Year-to-year
variability:
Standard
deviation

Year-to-year
variability:
Coefficient of
variation

Calendar month
with highest
mean monthly
precipitation

provided.

Only reference value and absolute change

R: Shift (in months) indicates change in
precipitation seasonality.

Calendar month
with lowest
mean monthly
precipitation

provided.

Only reference value and absolute change

R: Shift (in months) indicates change in
precipitation seasonality.

17
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RIO5T R: represents the contribution the heavy
precipitation days generate to the total
precipitation. Changes indicate a shift to more or
less extreme precipitation patterns, i.e. where
precipitation might concentrate in more intense
events.

U: to identify initial areas which could be prone to

increased risk of flooding, and for which an in-

depth flood risk assessment might be relevant.
Seasonal Mean of

1 March to May

2 June to August

3 September to

November

4 December to

February

Calendar Mean of
month 1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)

13. Water Annual Mean Absolute change and actual index value provided

scarcity (and reference value).

Water scarcity
Water use (consumptive)

Water availability

Year-to-year
variability:
Standard
deviation

Year-to-year
variability:

18
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Seasonal

Calendar
month

Coefficient of
variation

Mean of

1 March to May
2 June to August
3 September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

14. Water Annual
stress

Seasonal

Mean

Absolute change and actual index value provided
(and reference value).

Water withdrawals

Water stress =
Water availability

Year-to-year
variability:
Standard
deviation

Year-to-year
variability:
Coefficient of
variation

Mean of
1 March to May
2 June to August
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Calendar
month

3 September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable

Time
scale

Indicator Rationale (R) and potential use for local to
regional CC risk assessment (U)

15. Water
availability

Annual

Seasonal

Calendar
month

Mean A cell’s generated water (bwp or net cell runoff)
plus accumulated inflow from upstream cells with
already deducted upstream water use
(anthropogenic streamflow) and incorporating an
environmental flow requirement (80% of
naturalized streamflow to remain in river)

Year-to-year
variability:
Standard
deviation

Year-to-year
variability:
Coefficient of
variation

Mean of

1 March to May
2 June to August
3 September to
November

4 December to
February

Mean of
1 January
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2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

2.4 User interface of the data portal

The CO-MICC data portal is an interactive platform that offers the user a considerable degree of flexibility as
to the hazard indicator selection, the definition of the MME and the type of visualization. As shown in Figure
1, it encompasses a menu bar on the left, a data viewer in the form of global maps and a tool for further data
analysis in the form of various graphical representations (pop-up window hereafter called “raster cell box”).
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Figure 1: Frontend of the CO-MICC data portal: a menu bar on the left, and a data viewer with the global

maps.

The hazard indicator is specified through the usage of four drop-down menus (Figure 2a) to select the
hydrological variable, the time scale (annual, seasonal or monthly), and the statistic(s) to be calculated. Lastly,

the modus can be changed (for most indicators, the choice can be made between relative and absolute
changes as compared to the reference period). The definition of the MME is done by means of two selection
menus (Figure 2b); one to specify the combination of RCPs and the other of GHMs. In both cases, all

combinations are possible. By default, all possible GCMs and GHM variants are included (see Chapter 2.1).

a)

Indicators ©

Variable ©@

Precipitation

Time scale

Annual

Statistics

Mean

Modus ©

Relative Changes

b)

Model Selection €

Representative Concentration Pathway €@

260
450
6.0 0
850

Hydrological Model €@
CWatM

LPJmL
WaterGAP2

Figure 2: Menu options to select the hazard indicator and the multi-model ensemble. a) Drop-down menus
for the selection of the hazard indicator. In the present example, the selected indicator corresponds to the
relative change of mean annual precipitation between the reference and the future period. b) Menus for the
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selection of Representative Concentration Pathways (RCPs) and Global Hydrological Models (GHMs). In the
present example, only one RCP, namely RCP2.6, and all three GHMs are selected to be part of the ensemble
to be displayed.

By default, the data viewer displays the data corresponding to all grid cells globally. However, it can be the
case that the user is only interested in the data in the cells corresponding to major basins. In that case, the
user can define a minimum basin size by means of a slider, enabling in this way the selection of relevant
basins (Figure 3).

Basin Size (km2) ©

3,943,754

/0
0 5,000,000

Figure 3: Slider to set a minimum threshold for basin size.

Furthermore, the user has the choice between multiple spatial aggregation options. The selection is done
through a drop-down menu (Figure 4). By default, the data viewer shows the data without any spatial
aggregation, i.e. the data corresponding to each individual grid cell. In addition, the user can choose to have
the data aggregated at the scale of predefined basins (approximately the largest 300 basins are included) or
basins defined by each cell, i.e. corresponding to the upstream area of each cell.

Aggregation ©

Cell v

Figure 4: Drop-down menu to select the spatial aggregation of the data.

The uncertainty of the MME data is represented in different ways in the portal, for both the map and cell
displays. They therefore include several options in the left-hand-side menu as well as some of the diagrams
available in the raster cell box. The visual representation of uncertainty is described in more detail in Chapters
24.1and2.4.2.

2.4.1 Data viewer

The maps show the selected hazard indicator by different colors according to a legend located in the bottom
right corner of the data viewer. The legend is characterized by a diverging color scale with classes
representing smaller numbers in light colors and classes representing larger numbers in dark colors. The
range of the class containing the midpoint of the scale (i.e. zero) is deliberately small as it represents the case
where there is no significant change or a very small change. The number of classes, which varies between 8
and 13, and the class breaks have been predefined after careful consideration by the modelers. The indicator
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values are provided for different spatial aggregations:

1) for each 0.5° grid cell

2) aggregated over countries, where each grid cell pertaining to a country shows the country average
value of the indicator

3) aggregated over predefined basins (approximately the largest 300 basins are included), where each
grid cell pertaining to a basin shows the basin average value of the indicator

4) aggregated over cell-specific basins (i.e. drainage basin of each cell), where each grid cell shows the
upstream area (including the cell itself) average value of the indicator

When hovering with the mouse over a cell, a text box with the cell coordinates appears in the bottom left
corner of the data viewer. Buttons to zoom in and out, to switch between different background layers and
to download the data (as a CSV file) and map (as a PNG file) are also included. Furthermore, a time slider and
animation option in the lower part of the data viewer allow the user to move through time.

Regarding the uncertainty of the MME data, some of the elements in the left-hand side menu have been
explicitly designed to integrate this type of information in the map display. For instance, the “reliability” slider
(Figure 5) allows the user to set a minimum threshold for the percentage of MME members agreeing on the
sign of projected change (positive or negative), below which data in a cell is not displayed. For example, if
the user sets the reliability slider to 75%, this means that at least three quarters of all MME members need
to agree on the sign of change; the grid cells for which this condition is not met are filtered out in the data
viewer. This option gives the user the freedom to set the condition that defines whether the forecast given
by the selected MME is reliable or not. The filtered-out cells are considered to contain data that is too
uncertain and thus unreliable.

Reliability €

I
50 100

70

Figure 5: Slider to set a minimum threshold for the percentage of multi-model ensemble members agreeing
on the sign of change.

Moreover, instead of only one type of value describing the MME change, the user can choose between
displaying the ensemble median (default option), the ensemble 10" percentile or the ensemble 90%
percentile by the means of a drop-down menu (Figure 6). In this way, the user can get a picture of the MME
data uncertainty.

Uncertainty @
Ensemble P90 Change v

Figure 6: Drop-down menu to select the multi-model ensemble value to be displayed.
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2.4.2 Raster cell box

The raster cell box is displayed over the data viewer when clicking on a specific location. A menu on the left
of the box offers a selection of different graphical representations that the users can choose from, depending
on the type of information that they wish to visualize (temporal evolution, comparison between different
RCPs or GHMs, probabilities etc.) and how they want it to be displayed (e.g., time series, box plots). These
graphical representations can be classified into three chart type categories: curves, box plots and tables. As
for maps, it is also possible to download the graphs (as PNG files) and related data (as CSV files) generated
with the raster cell box.

By default, the data is displayed in the form of a time series (curve chart) with the y-axis representing the
relative (or absolute) change and the x-axis the climate period centre (Figure 7). Each data point corresponds
to the change averaged over the 30-year period defined by its centre year. For example, the year 2030
actually refers to the climate period 2015-2044. The MME median is represented as a line. Furthermore, two
levels of shading around the curve are given; the darker shading represents the spread of the individual
solutions between the 25" and 75" percentiles, and the lighter shading the spread between the 10" and 90"
percentiles. In this type of representation, information about the uncertainty is given by the shaded areas.

Figure 7: Time series displayed in the raster cell box.

Another option to display the data is a chart type called “box plot”. Box plots are useful to compare the
distribution of multiple sets of data. The user can choose to display box plots to compare the distribution of
MMEs corresponding to different RCPs or to different GHMs (Figure 8). In this way, it is possible to visualize
the uncertainty related to the choice of RCP and to the choice of GHM.

A box plot shows the distribution of the values of a given data set. It is composed of a box and two whiskers
(i.e. lines extending from the box). The box gives a three-number summary of the distribution, namely the
median (or 50" percentile), and the 25" and 75 percentiles (or first and third quartiles). In a box plot drawn
vertically (a box plot can also be drawn horizontally), the bottom and upper ends of the box represent the
25% and 75™ percentiles, respectively, and the median is represented as a dark bar within the box. The
bottom and upper whiskers show the 10" and 90" percentiles, respectively.
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Figure 8: Boxplots displayed in the raster cell box.

Moreover, the MME data can also be visualized in the form of a table. Three types of value are given in the
table, namely the median and the 10" and 90™" percentiles. Values are given for all projected 30-year periods
and for all RCPs individually, showing in this way the uncertainty related to the choice of RCP.
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3. Methods for utilizing uncertain multi-model based information on freshwater-
related hazards of climate change

According to IPCC (2014, p. 9), “assessment of the widest possible range of potential impacts, including low-
probability outcomes with large consequences, is central to understanding the benefits and trade-offs of
alternative risk management actions”. Therefore, not only multi-model ensemble means should be analyzed
but also less likely outcomes with a high risk, i.e. outcomes that may have strong negative impacts. MMEs
can inform stakeholders with different degrees of risk aversion or “safety requirements” (Crosbie et al. 2013).
For example, in a case where a certain decrease in a statistical low streamflow (e.g. monthly Qgo) would put
the production of safe drinking water at risk and require investment in additional water supply infrastructure,
stakeholders with a high safety requirement may decide in favour of the investment even if only 10% of the
ensemble runs project such a decrease over the design period, while stakeholders with a low safety
requirement may only invest if at least 50% of the runs do this.

A first step in climate change risk assessment is the definition of relevant risks, with the formulation of the
specific risks of what and for whom. For example, a risk for water supplier could be formulated as the risk of
certain increases in the frequency of water use restrictions caused by a lack of water supply in a changing
climate, e.g. from 1-in-10 years to 1-in-5 years, as suggested by Borgomeo et al. (2016, 2018) in a case study
of water supply in the British Thames river basin. In the next step, risk was quantified by using a sophisticated
water supply model that was driven by an ensemble of climate scenarios as well as scenarios of water
demand. Then, adaptation measures such as the construction of water reservoirs were implemented in the
model to see their effect. Finally, the cost of adaptation measures could be related to their risk-reducing
effect, i.e. to what extent they could reduce the otherwise increased frequency of water use restrictions. A
more simple risk metric is, for example, the ratio of water demand over water resources. Even hazard
indicators such as the change in statistical low streamflow values (e.g. indicator Qgo, Chapter 2.3) can be used
as a risk metric for the well-being of the exposed freshwater biota.

To guide the user optimally, in this chapter we distinguish utilization of the information into two broad
categories, specifically utilization of information for small regions as compared to utilization of the complete
global-scale information. Both are associated with different target user groups, associated methods and
support different kinds of risk assessments, and are described in the respective subsections in this chapter.

3.1 Local to regional climate change risk assessments

Once the relevant local freshwater-related risks of climate change have been formulated, including the
causative changes in specific water flows (e.g. streamflow) and storages (e.g. soil moisture), suitable
hydrological hazard indicators need to be determined. For example, the change of mean streamflow during
the summer season might be critical for a specific risk. Then, as indicated in Chapter 1, local climate change
risks assessment and management would ideally be informed by the mean summer streamflow changes as
projected by a MME consisting of various local (or basin-scale or regional) hydrological models that are fed
by climate change scenarios from a range of global (and possibly regional) climate models. If such MMEs are
not available, there are methods of utilizing the information provided on the CO-MICC portal in local to
regional freshwater-related climate change risk assessment.

If there is very little local information available, which is often the case in particular regarding hydrological
variables such as soil moisture or groundwater recharge, direct use of the 0.5° grid scale percent changes of
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hydrological variables as provided by the CO-MICC ensemble provides informative input to local to regional
climate change risk assessments. However, it is preferable to combine the spatially coarse and non-local data
available at the CO-MICC portal with local information and data in a meaningful way. Chapter 3.1.1 describes
how this can be achieved in a simple way. In Chapter 3.1.2, more sophisticated and costly options are
presented. In Chapter 3.1.3, we present how CO-MICC MME data can be utilized by Bayesian Belief Network
(BN) modeling for local (to regional) risk assessments. With this approach, local climate change risks can be
estimated in a probabilistic manner, thus explicitly taking into account uncertainty. We provide a specific
example of how the CO-MICC MME data can be integrated into the BN to compute climate change risks for
water supply. This example is applicable in case there is no local or regional hydrological model available.

3.1.1 Simple approaches for combining CO-MICC MME data with local data

Values of hydrological variables, computed by driving GHMs by GCM output, such as, for example, of
streamflow during the reference period, in most cases do not fit well to local-scale observations. One reason
is that due to the stochastic and chaotic character of weather, it is impossible for GCMs to simulate the
historic weather exactly. Other reasons are model uncertainties of GCMs and GHMs. Even after bias-
adjustment of GCM output (daily temperature, precipitation, etc.) using observation-based historic climate
time series, the historic time series of simulated climate variables of a certain GCM may differ appreciably
from both observations and the output of other GCMs. GHMs driven by climate scenarios can provide,
however, robust information on hydrological changes due to climatic (and other) changes, with relative
changes likely being more robust than absolute changes, as the absolute values during the reference period
differ among GCMs and from observations. To estimate a plausible range of future values of hydrological
indicators, we therefore recommend combining the best local estimates of hydrological indicators (HIs) of
interest (e.g. mean groundwater recharge, snow storage in March, net irrigation requirement in the summer
season or the annual streamflow that is exceeded in 1 out of 10 years) with percent changes of these
indicators from the CO-MICC MME. Applying each of the e.g. 24 estimates of percent change in hydrological
indicator HI (one per ensemble member) separately, the ensemble of future local Hl is calculated as:

HI_local (future time period) (ensemble member i) = HI_local (reference time period best local estimate) * (1
+ percent change of HI of ensemble member i/ 100) (Eq. 1)

However, this approach may not lead to meaningful information for all hydrological hazard indicators. For
example, GHMs cannot simulate well the seasonality of streamflow in highly managed basins with large water
abstractions and man-made reservoirs, or even water transfers out of the basin. In this case, the MME
percent changes of e.g. streamflow in May should not be used for local risk assessments. To assess season-
specific hydrological changes in such basins, it is required to use a local hydrological and water supply model
to translate MME changes to changes in local dynamics.

3.1.2 More sophisticated and costly options

In many catchments or river basins, there exists a good local hydrological and/or water supply system model
that takes into account the management of reservoirs, water abstractions and water transfers. In this case,
there are many options for combining information from the CO-MICC MME with the local model. The choice
of option depends on the model and the local conditions. Downscaling of the 0.5° output of the CO-MICC
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ensemble with a local hydrological model can be achieved by using CO-MICC MME percent changes of annual
“blue water production” (BWP, equivalent to the total runoff generation from soil and surface water bodies)
(see Chapter 2.3). The total runoff estimates of the local model within each 0.5° grid cell for the reference
period can be scaled with the 0.5° percent changes of the CO-MICC MME, such that for each ensemble
member and 0.5° grid cell, the percent change of the mean annual total runoff of the local model is equal to
the value of the corresponding CO-MICC ensemble member. In this way, a major signal of climate change
that is known to vary widely among GCMs and GHMs is represented by the local model simulations. However,
changes in seasonality and other temporal variabilities as driven by climate change are not taken into
account. Alternatively, changes in mean monthly naturalized streamflow in 0.5° grid cells (12 values per grid
cell) could be utilized for scaling time series of temporally and spatially more highly resolved streamflow that
is computed by the local model for the reference period. Then, the local supply model would be run for the
whole reference period with implementation of the scaling factors from each CO-MICC ensemble member.
This will produce a number of local model results for the selected future time period, one for each CO-MICC
ensemble member, and thus a range of potential futures of streamflow at the spatial and temporal resolution
of the local model.

If there is a local water supply system model that simulates the operation of reservoirs and water abstraction,
MME data on changes of mean monthly naturalized streamflow upstream (see Chapter 2.3) of the most
upstream reservoir and of significant surface water abstraction can be used as input to the local water supply
system model. To compute future hydrological conditions, the inflow into the most upstream reservoir
simulated by the local model for the reference period could be scaled, separately for each calendar month,
with percent changes of mean monthly naturalized streamflow of each CO-MICC ensemble member
individually, according to Equation 1. For each calendar month of the time series, the same change factor is
applied. This generates six local streamflow time series for each future time period and RCP that then serve
as input to the local water supply system model. In case of irrigation water use, the percent change of net
irrigation requirement of the CO-MICC ensemble could also be taken into account to scale water abstractions
or consumptive irrigation use as computed by the local model. Then, the local supply model would be run for
the whole reference period, driven by the scaled inflow (and irrigation water abstractions). This will produce
local model results over the selected future time period for each CO-MICC ensemble member, i.e. an
ensemble of local model runs for the future time period and a range of potential futures of e.g. reservoir
outflow or water demand coverage.

A popular water supply or rather water allocation model is the WEAP (Water Evaluation and Planning)
software (www.weap21.org), partly because it is free-of-charge for low-income countries and relatively easy
to set up. WEAP requires upstream streamflow data (monthly time series) and then computes the demand
coverage of water demand sites that are distributed along the stream network, also taking into account
reservoirs. To estimate the impact of climate change on water demand coverage, the local best estimate time

series of upstream streamflow for the reference period is modified using the percent changes of mean
monthly naturalized streamflow to generate local streamflow time series for a future time series. This
approach is the same as suggested in the last paragraph for application with local water supply system
models.
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3.1.3 Bayesian Belief Network Modelling

Local climate change risk assessments are best supported by a quantitative integration of physical hazards,
exposures and vulnerabilities that includes the characterization of uncertainties. Using Bayesian Networks
(BNs) for this task is a suitable approach as the available MME output can be integrated into BNs, in order to
probabilistically assess risks for, e.g., water supply.

Bayesian Networks are a cutting-edge integrated modelling approach (Terzi et al., 2019; Diispohl et al., 2012)
to deal with uncertain and complex domains such as climate change by estimating probabilities of risks (Phan
et al., 2016; Sperotto et al., 2017). BNs are a formal representation of the joint probabilistic behavior of a
system conditioned by deeply uncertain but potentially useful information about the future (Lempert, 2004;
Taner et al., 2019). They can (1) combine quantitative multi-model output data and qualitative expert
knowledge, (2) inherently deal with uncertain multi-model ensemble projections and other system variables
through their representation with probability distributions, (3) include multiple stressors and endpoints, (4)
compute alternative scenarios for water availability and demand, and (5) take into account the effect of
adaptation policies on climate change risks (Sperotto et al., 2017). In the past two decades the use of Bayesian
Networks in many environmental fields with a risk assessment perspective has been exponentially growing
(Phan et al., 2016) and Bayesian networks are increasingly being integrated with other modeling constructs
and tools (Marcot and Penman, 2019). Phan et al. (2016) found 111 original, peer-reviewed papers published
from 1997 to 2016 dealing with Bayesian Networks in the field of water resources. Sperotto et al. (2017)
reviewed 22 publications dealing with Bayesian Networks for climate change risk (or impact) assessments
and management.

In this chapter we use an example of a co-developed Bayesian Network Model from a stakeholder dialog with
water experts from the Maghreb countries (Chapter 2.2) to show how such a BN can be set up. This focuses
on how to integrate CO-MICC MME data into a BN to obtain a state-of-the-art representation of climate
change hazards and their uncertainties, and the involvement of experts in the BN development. For the
example, projected relative changes in runoff, groundwater recharge and net irrigation requirement from
the MME were processed using MATLAB, taking into account local information on historic water availability
and use. Probability distributions of risk levels under historic and future climate and water use were co-
developed with experts from the Maghreb, who positively evaluated the BN application for local climate
change risk assessments. The presented approach is thus suitable for application in the many local climate
change risk assessments necessary for successful adaption to climate change world-wide.

3.1.3.1 Method and co-design

A linked chain of models informed by the MME output, literature data and local expert knowledge and
literature data can be used to assess the probabilistic risk of climate change for water supply from
groundwater and from surface water (Figure 9). Our method consisted of six steps: (1) co-defining the real-
world problem, the key risks, the structure of the system to be modeled including its boundaries and its
spatio-temporal extents and resolution as well as the system variables, (2) co-developing causal networks,
(3) co-developing the Bayesian Network model structure including gathering data from literature and our
multi-model ensemble, (4) setting up the Bayesian Network model based on computations with the software
tools MATLAB and Netica, and (5) simulating the Bayesian Network model with Netica under reference and
future conditions, computing risks under different climate change and water use scenarios.
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Figure 9: Steps 1 to 6 (blue numbers) of local climate change risk assessments by BN modeling, with the three
knowledge sources local expert knowledge, multi-model ensemble and literature.

Local expert knowledge is integrated in steps 1, 2, 3 and 6 in our participatory process (Figure 9). It was
elicited during individual interviews and two expert workshops with scientific presentations, guided
discussions and break-out groups (Table 2).

Table 2: Expert involvement.

Number
of local
experts

Type of

. - Location
interaction

Duration Date

Topic

Tuni (Tunisia)
Algiers
Marrakesh, Bel

Semi-
structured

expert 13

(Algeria)

1

2)

10 days, 2

ni | hours per May

2018

3

Tasks, responsibilities and challenges of
expert’s organization

Expert's problem perception of the situation
and challenges in the country
Co-development of causal
representing the situation

networks

interviews

Mellal, Casablanca
(Morocco)

interview

4) Information needs to support the country in
climate change adaptation in the water sector
5) Data availability and needs, time frame for

planning of the organization

Workshop |

Le Mans (France)

1.5 days

November
2018

1) Presentation of causal networks

2) Introduction to Bayesian Networks and
presentation of first Bayesian Network structure

3) Agree on expert’s input for knowledge and
data provisioning

Workshop I

Tunis (Tunesia)

2 days

October
2019

1) Presentation of further developed Bayesian
Network

2) Co-development of possible risk indicators,
further variables and qualitative classes

3.1.3.2 Co-developing causal networks

During expert interviews, causal networks or influence diagrams were created as perception graphs regarding
climate change impacts on water from the point of view of the expert’s organization (Diispohl and Déll, 2016).
They are useful during the interviews in elucidating the perception of each expert in a concrete way and
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visualize it. All causal networks taken together were translated into a Bayesian Network structure (next
section) taking also into account the most important factors and relationships reported in literature.
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Figure 10: Causal networks of three experts, depicting actions (rectangles), factors (oval, non-colored boxes)
and goals (oval, colored boxes).

3.1.3.3 Co-developing the Bayesian Network structure

A BN model is a probabilistic graphical model for which a graph expresses the conditional dependence
structure among variables. It consists of two main components: (1) the structure of the Bayesian Network,
i.e. a directed acyclic graph that consists of a set of nodes representing the system variables and a set of
arrows indicating the relationships between the system variables (Phan et al., 2016), and (2) conditional
probability tables or deterministic expressions that represent how one system variable depends on the state
of another variable, thus quantifying the links in the graph (Phan et al., 2016). Each variable is described by
distinct classes of values or states and the probability of the variable belonging to each class. For Bayesian
Network modelling we used the software Netica (http://www.norsys.com/netica.html).

The developed Bayesian Network model structure with variables, classes and links is shown in Figure 11. Two
risk nodes are placed at the bottom of the net (red boxes) and were defined for groundwater and for surface
water as “risk level of groundwater scarcity” and “risk level of surface water scarcity”, respectively. The
qualitative risk nodes only depend on quantitative groundwater and surface water scarcity indicators,
respectively (pink boxes). The groundwater scarcity indicator is computed as the ratio of annual groundwater
abstractions (under long-term mean annual climate) to long-term mean annual groundwater recharge. The
surface water scarcity indicator is computed as the ratio of surface water abstractions (under long-term mean
annual climate) to long-term mean runoff. Given the high uncertainties of runoff and groundwater recharge
estimates for the particular basin in the reference period, and to keep the complexity of the BN low, we
assumed that mean annual surface water availability is equal to mean annual runoff and did not take into
account that it may be reduced due to a decrease of groundwater discharge that is caused by groundwater
use.

The water scarcity indicators are the child nodes of nodes representing physical hazards (blue boxes) as well
as vulnerabilities and exposures (yellow and green boxes). The three hazard nodes are: Net irrigation
requirement change due to CC, groundwater recharge change due to CC and runoff change due to CC. The
yellow nodes are root nodes that representing water use-related vulnerabilities and exposures which require
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input from experts, while the green ones are child nodes computed by the BN model. The model structure
comprises two decision nodes: “Time period and RCP” (orange box at the top of the net) and “Allocation
ground- and surface water”, which need to be set by BN user to yield computations for the specific time
period and RCP and a specific ration of groundwater to surface water use. Except for these two, all other
nodes are probabilistic nodes.
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Figure 11: Bayesian Network model with nodes representing: 1) RCP and future time period (orange box), 2)
physical hazards (blue boxes, informed by multi-model ensemble), 3) exposures and vulnerabilities, developed
from expert knowledge and literature (yellow boxes), 4) computed intermediate variables representing water
use (green boxes), 5) key risks indicators (pink boxes) and qualitative risk levels (red boxes). CC denotes climate
change. Stars denote the root nodes for which absolute values for the reference period need to be specified
to allow computation of the key risk indicators (see section 3.1.3.4). These nodes require an absolute value
[m?] for the reference period. The child nodes do not require a probability table, just an equation is entered.

3.1.3.4 Setting up the Bayesian Network model

As input for the Bayesian Network model we used data from a MME (Chapter 2) and data from literature and
expert knowledge.

Regarding the latter, input of the water supply risk BN encompassed data on water resources, water demand
and management in the study area during the reference period. A literature review and knowledge of local
experts served to provide absolute values of all BN variables for the reference period, as these are required
to compute the two selected key risk indicators, 1) a groundwater scarcity indicator, the ratio of groundwater
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abstractions to long-term mean annual groundwater recharge and 2) a surface water scarcity indicator, the
ratio of surface water abstractions to surface water availability. In addition, published expectations of change
for management and water demand nodes were reviewed as the basis for plausible ranges of change in the
designed scenarios.

Setting up a BN model requires input information for each node in two steps: (i) defining the classes of each
node and (ii) entering the probability distribution either directly (for root nodes) or — where it depends on
the parent nodes — in the form of conditional probability tables (CPTs) for child nodes. Defining classes
includes extracting lower- and upper-class boundaries and a uniform class size, based on the occurring range
of values for the respective variable. This range can be either defined by the given input data from the multi-
model ensemble or from literature, or by the passed down, combined ranges of parent nodes. Therefore, the
required information and our process below differs slightly for the different types of nodes in the network.

In general, standard Bayesian Network software such as Netica is not suited to extract information for
defining classes of a root node from a given multi-model ensemble or other data source. Instead, Netica
requires this information to be entered manually. Nor is it able to calculate down the graph the optimal class
boundaries of nodes depending on the ranges of values in the parent nodes. Therefore, we used the software
MATLAB for calculating the required input into Netica for the different node types:

- Root nodes (representing physical CC hazards, derived from multi-model ensemble output): Based on
the ensemble of future relative change values from the multi-model output and the absolute
reference value from literature, uniform class boundaries were calculated in the form of relative
changes and of absolute values for input into Netica. In addition, the probability distribution of
changes in the three hydrological variables was computed for each RCP (orange box in Figure 11): for
future periods the probability distribution was calculated for each individual RCP and for all RCPs
mixed together, assuming that each GCM-GHM model combination is equally likely. For this, each
output value of the multi-model ensemble members was assigned to its corresponding class and the
probability for multi-model ensemble members to be in one class was calculated (e.g. a result of 8
out of 64 ensemble members in one class represented a 12.5% probability). For the reference period
the distribution was manually set to 100% in the class of zero change.

- Root nodes (exposure/vulnerability, starred yellow nodes): Based on the absolute reference value
and respective scenario ranges of relative change, class boundaries were calculated in the form of
relative changes and of absolute values as well.

- Child nodes (green nodes): Based on the minimum and maximum class boundary, the absolute
reference value of each parent node and the quantitative relationship between the parent nodes,
the absolute reference value for the reference period of the child node and the class boundaries
were calculated.

- Risk indicator nodes (pink): Class boundaries and absolute reference values were calculated as for
other child nodes. In addition, the uniform class boundaries over the range of occurring values
obtained by MATLAB were manually adjusted to reflect details around actual critical thresholds after
assessing the occurring values. Adjustment included the number of classes and non-uniform class
sizes.

- Risk nodes (red): For the actual risk node, a meaningful aggregation of the risk indicator classes was
performed, to enable effective risk management and decision-making. Four classes (green, orange,
pink, red) reflected the user’s specific view of the actual thresholds between acceptable and
unacceptable performance; the assigned thresholds defined the class boundaries.
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For each node type, we selected an appropriate number of classes (blue: 10, yellow: 5, green: 10, pink: 20,
red: 4) considering data availability and detail needed. In general, the more precise the knowledge, the more
refined the resolution in a node.

The MATLAB result for probability distributions of blue and yellow root nodes (Figure 11, marked by stars)
was then transferred into the conditional probability table of the respective node in Netica. Each climate
scenario (reference period, future periods with RCPs individually or equally likely) yielded a row in the table;
here, the current period was set manually to 100% in the class of zero change. The probability distribution of
all down-graph child nodes (variables computed from other variables, i.e., green nodes in Figure 11) is given
in conditional probability tables. These were computed by Netica based on specific equations describing the
guantitative relationship (e.g. additive, subtractive, etc.) between the parent nodes which were entered into
the software. For the risk nodes (red), the conditional probability tables comprised an aggregation of the
values from the risk indicator node (pink) into the four classes. The Netica computation of the CPTs was based
on 108 samples per cell.

3.1.3.5 Simulations and probability distributions of risk levels

The Bayesian Network model was first used to determine probability distribution of the groundwater and
surface water scarcity and thus the respective water supply risks. Specifically, seven scenarios and what-if
cases were calculated, combining different RCP scenarios in the orange selector node and water use
scenarios selected in the yellow root nodes — either deterministically or equally likely (see Figure 12).
Comparing the risks between the reference period and the future period for the six scenarios enables to
understand how risks for water supply may develop in case the different scenarios became true.

1 2 3 5 6 7
Name Ref Ref 2.6_Ref Equal_Ref 2.6_Best Equal_Equal 8.5_Worst
Period Reference Future Future Future Future Future
Climate Reference (RCPs RCP 2.6 RCPs equally RCP 2.6 RCPs equally RCP 8.5
equally likely) likely likely
Water
use Reference Reference Reference Best case Equally likely Worst case

Figure 12: Scenarios generated in this study combining different scenarios of climate change between the
reference period 1981-2010 and the future period 2050-2079 with reference water use and with changing
water use scenarios. “Scenario 1” is not an actual scenario but represents the conditions during the reference
period.

Results of probability distributions are shown for the two risk level nodes of the Bayesian Network (Figure
13). Results show the change in the probability range for the future scenarios compared to the reference
scenario (Ref_Ref). The BN could further be used to determine the impact of a certain action of policy
measure on risk, by assessing the impact on risk from a change in a specific node.

35



Co-development of methods to utilize uncertain multi-model

based information on freshwater-related hazards of climate change co = M I cc

100% 100%
TN
80% 80%
70% 70%
60% 5
50% = 50%
20%
30%
20%
10% I

0%

2

2

g

Probability
Pobability

3

| | =
& & o& o8 & & & & P
& @v «}f AN 4 & & ©7 > XIS &
<€ % & @ A « o‘f} RY < v & % A § &\:p RY
mgreen orange W red H purple
(a) risk of groundwater scarcity (b) risk of surface water scarcity

Figure 13: Cumulative probability distributions of risk levels for the nodes (a) risk of groundwater scarcity
and (b) risk of surface water scarcity for seven scenarios.

3.2 Global-scale climate change hazard and risk assessments

The CO-MICC portal provides data and visualizations for 0.5° grid cells or aggregations of these cells (Chapter
2.4). These data and visualizations can be directly used without any downscaling to fulfill various information
needs. Scientists and educators are potential users of the information on the wide variety of freshwater-
related hazards of climate change provided on the CO-MICC portal. Companies with globally-spread
production sites and supply chains can use the information for their water footprint and life cycle analysis.

3.2.1 Utilizations by educators, hydrological consultants and scientists

Those wishing to educate others about freshwater-related hazards of climate change in their country or
world-wide can select hydrological variables of interest such as soil moisture or groundwater recharge and
then zoom into the region of interest. They can then download the visualization shown on the screen and
use the graphics in their educational efforts.

Hydrologists working e.g. as consultants or engineering firms may prefer to download the MME values of
freshwater-related climate change hazards directly, to use them for their professional purposes. Scientists
outside of hydrology are also likely to download the values for specific variables of interest to them. Examples
are freshwater ecologists, who require information on potential streamflow changes as this affects suitability
of streams as habitat for freshwater biota. Terrestrial ecologists interested in riparian vegetation would also
download streamflow data, while those interested in forests and other vegetation would like to analyze soil
moisture changes. Groundwater recharge changes are of interest to global energy modelers who want to
assess the potential for the production of hydrogen, while streamflow changes are of interest for hydropower
production.
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3.2.2 Utilization by global companies
3.2.2.1 Introduction

With climate change being considered as one of the most prominent challenges the world is facing today,
global companies have the responsibility to act as well as a need to prepare. Act to mitigate the adverse
effects of global warming, and the need to prepare for the future impacted by changing climate. That includes
performing risk assessments, developing climate strategies as well as reporting on the current performance
and on future climate risks through well-established frameworks such as CDP (formerly Carbon Disclosure
Project) or TCFD (Task Force on Climate-related Financial Disclosures). The goal of the global stakeholder
dialogue was to co-design methods

The CDP (formerly the Carbon Disclosure Project) is an international non-profit organization that runs the
global disclosure system for investors, companies, cities, states and regions to disclose and manage their
environmental impacts. Its aim is to make environmental reporting and risk management a standard business
practice, driving disclosure, insight, and action towards a sustainable economy. Current areas of focus include
climate change, water and forests (CDP2020).

The Task Force on Climate-Related Financial Disclosures (TCFD) is an organization that was established by the
Financial Stability Board with the goal of developing a set of voluntary climate-related financial risk
disclosures to help identify the information needed by investors, lenders, and insurance underwriters to
assess and price climate-related risks and opportunities. The Task Force developed widely adoptable
recommendations on climate-related financial disclosures that are applicable to organizations across sectors
and jurisdictions (TCFD2020).

3.2.2.2 Co-design

In a stakeholder dialog with two multinational companies, two PUNI methods were co-designed for optimally
providing information from multi-model ensembles on freshwater-related climate change risks including
their uncertainties to world-wide operating industries, in order to increase availability and applicability of
salient and credible information. Therefore, research on industry needs and state of the art as well as
interviews and workshops with world-wide operating industries were facilitated to bridge the worlds of
science and industry.

3.2.2.3 Identified water-related risks

2,114 companies disclosed their water-related information through CDP in 2018, currently representing over
50% of global market capitalization (CDP2018). The number of participants grows every year, across different
programs (climate change, water and forests). Table 3 displays the A-list (highest scored) companies in the
water program. Participation of some of the world’s largest companies provides a sound basis for a
preliminary identification of water-related risks industries face, but also highlights the need for robust
methods for conducting water-risk assessments (CDP2018).
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Table 3: Highest scored companies (A-list) in the water program of the CDP (CDP2018).

ACCIONAS.A.

Ford Motor Company

LG Innotek

Altria Group, Inc.

Galp Energia SA

LIXIL Group Corporation

Asahi Group Holdings, Ltd.

Gap Inc.

L'Oréal

AstraZeneca

General Mills Inc.

Metsa Board

Bayer AG

International Flavors

Fragrances Inc.

& | Microsoft Corporation

Braskem S/A

KAO Corporation

Mitsubishi Electric Corporation

Brembo SpA

Kirin Holdings Co Ltd

Nabtesco Corporation

CNH Industrial NV

Klabin S/A

Stanley Black & Decker, Inc.

Coca-Cola European Partners

Las Vegas Sands Corporation

Suntory Beverage & Food

Diageo

LG Display

Toyota Industries Corporation

FIRMENICH SA

Using the CDP database?, the following water-related risks (Table 4) and impacts were identified, along with
the primary response to those risks. It can be seen from the initial analysis that water-related risks can be
disruptive to companies’ operations and threaten their longevity. It is paramount that companies have the
tools to respond to them and to prepare their adaptation strategies.

Table 4: Water-related risks together with potential impact and response to those risks (CDP2018 and related

individual company reports).

Primary risk driver

Primary potential impact

Primary response to risk

Increased water stress

Increased operating costs
Disruption to sales due to
value chain disruption
Reduction or disruption in
production capacity

e Establish site-specific
targets

e Work with supplier to
engage with local
communities

® Secure alternative water
supply

e Adopt water efficiency,
water re-use, recycling and

! Based on water-related information disclosed through CDP by Volkswagen, Bayer, L'Oréal, General Mills Inc., Diageo,
FIRMENICH SA, Gap, International Flavors & Fragrances Inc., Stanley Black & Decker, Inc. in 2018 (CDP2018 and

related individual company reports)
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conservation practices
Water-related capital
expenditure

Supplier diversification

Increased water scarcity

Reduction or disruption in
production capacity
Supply chain disruption
Increased operating costs

Increase investment in new
technology

Detailed diagnostic today
and future

Alliance for Water Steward
Standard

Water-related capital
expenditure

Drought Reduction or disruption in Increase investment in new
production capacity technology
Increased production Engage with NGOs/special
costs interest groups

Flooding Supply chain disruption Amend the Business

Continuity Plan

Severe weather events

Increased production
costs due to changing
input prices from supplier

Certification, collaborative
actions

Declining water quality

Increased operating costs

Engage with NGOs/special
interest groups

Alliance for Water Steward
Standard

Inadequate infrastructure

Reduction or disruption in
production capacity

Adopt water efficiency,
water re-use, recycling and
conservation practices

Rationing of municipal
water supply

Reduction or disruption in
production capacity
Increased operating costs

Establish site-specific
targets

Increase investment in new
technology

3.2.2.4 Existing tools and methods concerning water-related risks

Companies report the use? of the following tools and methods (Table 5) to identify and assess water-related
risks:

2 Based on water-related information disclosed through CDP by Volkswagen, Bayer, L'Oréal, General Mills Inc., Diageo,
FIRMENICH SA, Gap, International Flavors & Fragrances Inc., Stanley Black & Decker, Inc. in 2018 (DP2018 and related
individual company reports)
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Table 5: Water-related risks together with potential impact and response to those risks (CDP2018 and related
individual company reports).

WRI Aqueduct IPCC Climate Change Projections
WWEF-DEG Water Risk Filter Environmental Impact Assessment

Life Cycle Assessment FAO/AQUASTAT

Water Footprint Network Assessment tool Ecolab Water Risk Monetizer

WBCSD Global Water Tool Alliance for Water Stewardship Standard
COSO Enterprise Risk Management Framework Regional government databases
Maplecroft Global Water Security Risk Index National-specific tools or standards
Ceres AquaGauge Internal company methods

ISO 31000 Risk Management Standard External consultants

WRI (World Resources Institute) Aqueduct Water Risk Atlas, WWF-DEG (World Wide Fund for Nature and
German finance institution (Deutsche Investitions- und Entwicklungsgesellschaft)) Water Risk Filter and Life
Cycle Assessment (AWARE (Available WAter REmaining) methodology) were selected for further evaluation
due to their widely-adopted use by the industry in risk assessments, and due the shared similarities in relation
to the intended purpose of the tools.

WRI Aqueduct Water Risk Atlas is an online tool to access water-related risks. The tool compiles advances in
hydrological modeling, remotely sensed data, and published data sets into a freely accessible online platform.
Is it primarily a prioritization tool and should be augmented by local and regional deep dives. The tool covers
physical, regulatory and reputational risks across 13 indicators (WRI2019).

WWEF-DEG Water Risk Filter is an online tool developed by WWF and the German Development Finance
Institution DEG to explore, assess, and respond to water risks. Users can assess basin risks by entering
information on the sector and locations of its facilities. Based on the Water Risk Filter’s 32 water risk data
sets and pre-selected industry weightings, basin risk scores at the facility and for the entire portfolio are
generated. It covers physical, regulatory and reputational risks across 32 indicators (WWF2020).

The AWARE method is commonly used for assessing water scarcity as one of the results of the application of
the life cycle assessment (LCA) method. AWARE is used as a midpoint indicator related to water use and
representing the relative Available WAter REmaining per area in a watershed, after the demand of humans
and aquatic ecosystems has been met (AWARE2019).

3.2.2.5 Utilization methods

To address the variation of challenges faced by different stakeholders, two complementary PUNI-methods
to present the data from the multi-model ensemble were developed:
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Method 1: Production Site Granular Level Risk Assessment
Method 2: High-Level Supply/Value Chain Risk Assessment

Both methods were presented and discussed in the first phase of the stakeholder dialogue with the world’s
leading companies in the automotive and in the chemical sector (Section 3.2.2.8).

3.2.2.6 PUNI Method 1: Production Site Granular Level Risk Assessment

Goal: the selected indicators and diagnostics of Method 1 shall directly support the definition of
decisions and action.

Applicability: this method is applicable for all companies operating their own production sites
worldwide. It is particularly relevant for companies operating at an early stage of global value chains
—for example, those companies producing commaodities such as in the chemical or metal and mining
industry. In such settings water risk assessments at production-site level is common practice.
However, there is currently a lack of a) globally consistent data including uncertainties for future
water hazards and b) linking water hazards to climate adaptation analysis.

Desktop research: industry pre-assessment suggested an alignment between the industry needs and
the originally proposed CO-MICC indicators and diagnostics.

3.2.2.7 PUNI Method 2: High Level Supply/Value Chain Risk Assessment

Goal: identification of main risks and prioritization of actions within the companies’ supply/value
chains

Applicability: this method is applicable for all companies operating at the “end” of world-wide supply
chains, such as OEMs (e.g. automotive industry) and consumer goods (e.g. apparel industry). It is
particularly relevant for companies with complex supplier networks, where high-level screening
assessments are needed in order to prioritize actions within the supply chain. Those could include
informing selected suppliers and requesting more detailed analysis with the aim to define concrete
actions.

Desktop research: the need for additional high-level indicators was established. Those indicators
include water stress and water scarcity, which are common in the life cycle assessment method,
widely applied by globally operating companies.

3.2.2.8 Extended interviews

An integral part of the co-design efforts was the global stakeholder dialogue, during which interviews with
global companies were conducted. The purpose of the interviews was to:

a.

build on the industry pre-assessment conducted in the earlier stages and further explore (i) the
water-related risks that companies face, (ii) future assessment needs, (iii) tools, methods and data
currently used by industry for high-level strategic water risk assessment;

map the findings against possible project outcomes;

confirm relevance of PUNI Methods 1 and 2.
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3.2.2.9 Outcome of the stakeholder dialogue

The main outcomes of the interviews included further insight into the current practices by globally operating
companies in relation to water challenges and climate change adaptation; confirmation of the importance of
the proposed indicators and diagnostics; confirmation of the relevance of two PUNI methods proposed; and
specification of modelling requirements for users and modelers.

The global stakeholder dialogue confirmed the need for globally consistent data including uncertainties of
future water hazards, and for linking water hazards to climate adaptation analysis. The PUNI methods
presented to the companies were perceived as relevant and important, and as a result these indicators were
added to the portal:

e Water scarcity (based on Mesfin2016)

e Water stress (based on Mesfin2016)

e Water availability

The brief comparison of CO-MICC to the other three selected tools used by the industry, focusing on the
added value that CO-MICC could provide, illustrates the increase in knowledge through the project. WRI
Aqueduct Water Risk Atlas, WWF-DEG Water Risk Filter and Life Cycle Assessment (AWARE methodology)
and the CO-MICC portal attempt to assist with identifying current and future water-related risks, but differ
in terms of indicators covered, underlying models, timeframe, and among other aspects. WRI Aqueduct and
WWEF-DEG Water Risk Filter cover the period until 2040 and 2050, respectively, in ten-year increments, while
CO-MICC MME data provides data up until 2099 with five-year intervals. The longer time period is intended
to assist companies with long-term climate adaptation preparedness.

In terms of output variables as far as physical risks are concerned, both WRI Aqueduct and WWF-DEG Water
Risk Filter provide future projections for four variables, whereas CO-MICC MME data provides future
projections for all 15 variables covered by the project. A broad coverage of indicators is intended to help
global stakeholders assess climate change-related impact on water resources against multiple risk criteria. It
is also intended to provide the right level of granularity and transparency, and support companies in
deployment of the PUNI methods.

Regarding the RCPs for which future projections are provided, WRI Aqueduct centers the models around
RCP4.5 and RCP8.5, while WWF-DEG Water Risk Filter modelling is in line with RCP4.5 and RCP6.0. CO-MICC
MME data, on the other hand, incorporates all original RCPs — RCP2.6, RCP4.5, RCP6, and RCP8.5 for an
increased variety of future projection options. It is supposed to help companies prepare for a varied degree
of future scenarios.

A powerful addition offered by CO-MICC portal is the inclusion of uncertainties in future projections. As
opposed to the median, the outputs on the CO-MICC portal include uncertainty ranges. This is intended to
help the users assess their risks on a multiple scenario basis and prepare action plans reflecting the
uncertainty associated with future projections. In addition, the uncertainty ranges enable companies to
develop worst- and best-case scenarios with the risks assessments.

In life cycle assessment (AWARE methodology), characterization factors are derived using water availability
and water demand. While being a useful concept, it is somewhat limited in that future climate change-related
projections are not taken into account. CO-MICC MME data aims to address this gap, basing output variables
on both hydrological and climate change models. Since AWARE characterization factors are calculated using
a number of variables that are also covered by CO-MICC MME data (such as runoff, precipitation,

evapotranspiration), there is scope for the AWARE method to utilize the CO-MICC outputs.
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Appendix

Appendix A: Specification of the multi-model ensemble (MME) runs

e Land mask used
o0 WATCH-CRU land mask and DDM30 drainage map, consistent with ISIMIP simulations.
e C(Climate input data

o Climate input data based on ISIMIP2b is used to force the hydrologic models.
Bias-adjusted to the EWEMBI (http://doi.org/10.5880/pik.2016.004) data set at daily
temporal and 0.5° horizontal resolution using updated versions of Fast-Track methods (see
bias-correction Fact Sheet at www.isimip.org and Lange (2018) for methods description and
further references).

m Daily time step, 0.5° horizontal resolution

m Historical (1861-2005) and future (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) conditions
provided based on CMIP5 output of:

e |PSL-CM5A-LR 15
e GFDL-ESM2M
e MIROCS
e HadGEM2-ES
e Land-use input data
0 Land-use (like human influences below) is kept at 2005 levels.
O Vegetation is kept at what it is (except in LPJmL).
e Human influences:

0 Human influences should be fixed at 2005 levels (2005soc), in all simulations:
Reservoirs, dams, water abstraction, irrigation water extraction are simulated consistently
to ISIMIP: see section 2.5 in ISIMIP2b modelling protocol

e Lake specifications

o Consistent with ISIMIP2b simulations: see section 2.7 in ISIMIP2b modelling protocol
(https://www.isimip.org/documents/345/ISIMIP2b_protocol_AllSectors_fxQe9G5.pdf)

43


http://doi.org/10.5880/pik.2016.004
http://www.isimip.org/
http://www.isimip.org/

Co-development of methods to utilize uncertain multi-model

based information on freshwater-related hazards of climate change co = M I cc P )

References

AWARE2019  https://wulca-waterlca.org/aware/what-is-aware/. Accessed: September 2019

Borgomeo, E., Mortazavi-Naeini, M., Hall, J.W., Guillod, B. P. (2018): Risk, Robustness and Water Resources
Planning Under Uncertainty, Earth’s Future, 6, 468-487. https://doi.org/10.1002/2017EF000730

Borgomeo, E., M. Mortazavi-Naeini, J. W. Hall, M. J. O'Sullivan, T. Watson, T. (2016): Trading-off tolerable risk
with climate change adaptation costs in water supply systems, Water Resour. Res., 52, 622-643.
doi:10.1002/2015WR018164.

Burek, P., et al. (2020): Development of the CommunityWater Model (CWatM v1.04) — a high-resolution
hydrological model for global and regional assessment of integrated water resources management.
Geosci. Model Dev., 13, 3267—-3298. https://doi.org/10.5194/gmd-13-3267-2020.

CDP2018 CDP Global Water Report 2018 (https://www.cdp.net/en/reports/downloads/4232)

CDP2020 https://www.cdp.net/en/info/about-us

Cobb, A.N., Thompson, J.L. (2012): Climate change scenario planning: A model for the integration of science
and management in environmental decision-making. Environ. Modell. Softw. 38, 296-305.
doi:10.1016/j.envsoft.2012-06-012.

Crosbie, R.S., Pickett, T., Mpelasoka, F.S., Hodgson, G., Charles, S.P., Barron, 0.V. (2013): An assessment of
the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach
with an ensemble of GCMs. Climatic Change, 117(1-2), 41-53. doi:10.1007/s10584-012-0558-6.

Daniels et al. (2019). The Tandem framework: a holistic approach to co-designing climate services. SEI
Discussion Brief. Stockholm Environment Institute.

Dilling, L., Daly, M.E., Travis, W.R., Wilhelmi, O.V., Klein, R.A. (2015): The dynamics of vulnerability: why
adapting to climate variability will not always prepare us for climate change. WIREs Clim Change. 6,413-
425, doi:10.1002/wcc.341.

Djellouli Y. (2010): Common Scarcity, Diverse Responses in the Maghreb Region. In: G. Schneier-Madanes,
M.F. Courel (eds.), Water and Sustainability in Arid Regions. Collection Earth and Environmental Science.
Springer, 87-102, doi:10.1007/978-90-481-2776-4_6.

Doll, P., Romero-Lankao, P. (2017): How to embrace uncertainty in participatory climate change risk
management — a roadmap. Earth’s Future, Earth's Future, 5, 18-36. doi: 10.1002/2016EF000411.

Doll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Jiang, T., Kundzewicz, Z.W.,
Mwakalila, S., Nishijima, A. (2015): Integrating risks of climate change into water management. Hydrolog
Sci J, 60(1), 3-14, doi:10.1080/02626667.2014.967250.

Diuspohl, M., Déll, P. (2016): Causal networks and scenarios: Participatory strategy development for
promoting renewable electricity generation. J Clean Prod, 121, 218-230,
doi:10.1016/j.jclepro.2015.09.117.

Dispohl, M., Frank, S., Doll, P. (2012): A review of Bayesian Networks as a participatory modeling approach
in support of sustainable environmental management. J. Sustainable Development 5(12), 1-18,
d0i:10.5539/jsd.v5n12p1.

Frieler, K., et al. (2017): Assessing the impacts of 1.5 °C global warming — simulation protocol of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev., 10, 4321-4345, 2017. doi:
10.5194/gmd-10-4321-2017

44


https://wulca-waterlca.org/aware/what-is-aware/
https://doi.org/10.1002/2017EF000730
https://www.cdp.net/en/info/about-us
http://dx.doi.org/10.1016/j.jclepro.2015.09.117
http://dx.doi.org/10.1016/j.jclepro.2015.09.117
http://dx.doi.org/10.1016/j.jclepro.2015.09.117
https://doi.org/10.5194/gmd-10-4321-2017
https://doi.org/10.5194/gmd-10-4321-2017
https://doi.org/10.5194/gmd-10-4321-2017

Co-development of methods to utilize uncertain multi-model

based information on freshwater-related hazards of climate change co = M I cc P )

Haasnoot, M., Kwakkel, J.H., Walker, W.E., ter Maat, J. (2013): Dynamic adaptive policy pathways: A method
for crafting robust decisions for a deeply uncertain world. Glob Environ Change, 23(2), 485-498.
doi:10.1016/j.gloenvcha.2012.12.006.

IPCC (2014): Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: Global and Sectoral Aspects. Contribution of Working Group Il to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D.
Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy,
S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, pp. 1-32.

Jones, R.N., Patwardhan, A., Cohen, S.J., Dessai, S., Lammel, A., Lempert, R.J., Mirza, M.M.W., von Storch, H.
(2014): Foundations for decision making. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Part A: Global and Sectoral Aspects. Contribution of Working Group Il to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, pp. 195-228.

Jagermeyr, J.,, Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., Lucht, W.(2015): Water savings potentials of
irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073-3091, doi:
10.5194/hess-19-3073-2015.

Lempert, R., 2004. Characterizing Climate-Change Uncertainties for Decision-Makers. An Editorial Essay.
Climatic Change 65 (1-2), 1-9.

Marcot, B.G., Penman, T.D., 2019. Advances in Bayesian network modelling: Integration of modelling
technologies. Environmental Modelling & Software 111, 386—393.
https://doi.org/10.1016/j.envsoft.2018.09.016.

Mesfin2016 Four billion people facing severe water scarcity, Mesfin M. Mekonnen and Arjen Y. Hoekstra
(February 12, 2016) Sci Adv 2016, 2:. doi: 10.1126/sciadv.1500323

Milly, P. C. D. and Dunne, K. A. (2016): Potential evapotranspiration and continental drying, Nature Climate
Change, 6, 946—949,https://doi.org/10.1038/nclimate3046.

Midller Schmied, H., Caceres, D., Eisner, S., Florke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E.,
Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., Doll, P. (2021):
The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci.
Model Dev., 14, 1037-1079. doi: 10.5194/gmd-14-1037-2021

Phan, T.D., Smart, J.C.R., Capon, S.J., Hadwen, W.L., Sahin, O., 2016. Applications of Bayesian belief networks
in water resource management: A systematic review. Environmental Modelling & Software 85, 98—111.
https://doi.org/10.1016/j.envsoft.2016.08.006.

Sperotto, A., Molina, J.-L., Torresan, S., Critto, A., Marcomini, A., 2017. Reviewing Bayesian Networks
potentials for climate change impacts assessment and management: A multi-risk perspective. Journal of
Environmental Management 202 (Pt 1), 320-331. https://doi.org/10.1016/j.jenvman.2017.07.044.

TCFD2020 https://www.fsb-tcfd.org/about/

Taner, M.U., Ray, P., Brown, C., 2019. Incorporating Multidimensional Probabilistic Information Into
Robustness-Based  Water  Systems  Planning. Water Resour. Res. 26 (12), 1376.
https://doi.org/10.1029/2018WR022909.

Terzi, S., Torresan, S., Schneiderbauer, S., Critto, A., Zebisch, M., Marcomini, A., 2019. Multi-risk assessment
in mountain regions: A review of modelling approaches for climate change adaptation. Journal of
Environmental Management 232, 759-771. https://doi.org/10.1016/j.jenvman.2018.11.100.

45


https://www.fsb-tcfd.org/about/

Co-development of methods to utilize uncertain multi-model

based information on freshwater-related hazards of climate change co = M I cc o®

Quantis (2015): Quantis Water DataBase: A water database for Life Cycle Assessment: http://www.quantis-
intl.com/microsites/waterdatabase.php.

Reinecke, R., Miller Schmied, H., Trautmann, T., Andersen, L. S., Burek, P., Florke, M., Gosling, S. N., Grillakis,
M., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Thiery, W., Wada, Y., Satoh, Y., D6ll, P. ( 2021): Uncertainty of
simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble
study. Hydrol. Earth Syst. Sci., 25, 787-810. doi: 10.5194/hess-25-787-2021

Van Vuuren, D.P., et al. (2011): The representative concentration pathways: an overview. Clim. Change 109,
5-31, http://dx.doi.org/10.1007/ s10584-011-0148-z.

WRI2019 Aqueduct 3.0: Updated decision-relevant global Water risk indicators. Version: July 2019

WWF2020 Water Risk Filter 5.0 Methodology Documentation. Version: March 2020

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J. (2019: Hydrologic implications of
vegetation response to elevated CO2 in climate projections, Nature Climate Change, 9, 44-48,
https://doi.org/10.1038/s41558-018-03

46


http://dx.doi.org/10.1007/

	1. Introduction
	2. Methods for providing uncertain multi-model based information on freshwater-related hazards of climate change
	3. Methods for utilizing uncertain multi-model based information on freshwater-related hazards of climate change
	Appendix
	References

