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1. Introduction

Anthropogenic climate change will continue to happen in the future. This poses a multitude oforisks f
humans and other biota, in particular related to changes in the hydrological cycle. Risk assessment and thus
identification of climate change adaptation measures is severely hampered by the considerable epistemic
uncertainty about how climate and climatelated variables, including those describing the freshwater
system, will develop. Where future human decisions are involved, uncertainty is deep (D6ll and Romero
Lankao 2017). Deep uncertainty is best taken into account by generating plausible alegwnarios. A
scenario describes a potential future; it is not a prediction of what the future will be but rather a description

of how the future might unfold. Scenarios cannot be characterized by a probability but should be equally
plausible. An exampl#or scenarios relevant for climate change assessments are the four greenhouse gas
emissions scenarios (Representative Concentration Pathways or RCPs, Van Vuuren et al. 2011). There is only
medium to deep uncertainty in our knowledge about the complex ai@gwater system (D6ll and Romero
Lankao 2017), which makes it possible to quantify the uncertainty by probabilities of occurrence of certain
futures at least approximately. It is recommended to describe future clirnhtange related developments
separatly for each RCPin a probabilistic manner. It is not informative to only provide one deterministic
future under each emissions scenario, as it is not possible to predict, with a reasonable precision, the impact
of a certain greenhouse gas emissions seienon hydrological processes. Thus, for example, the hazard that
domestic or irrigation water supply will be exposed to due to climate change can only be quantified with a
large uncertainty. Consequently, decision making in the context of climate clsdgeision making under
uncertainty (Cobb and Thompson, 2012; Jones et al. 2014). In particular, decision makers or stakeholders
that are tasked with identifying and prioritizing suitable measures for adapting to climate change should fully
embrace the kowledge about potential future hazardsmdtheir uncertainties, and integrate this knowledge

in their decision process (Haasnoot et al. 2013; Dilling et al. 2015; D4ll and Rioamémn 2017).

How large a climate change risk is depends 1) on the magnitiidhe climate change hazard that is caused

by potential changes of physical processes such as precipitation or groundwater recharge, 2) on the exposure
of assets, humans and other biota to these changes and 3) on the specific vulnerability of the esyste®d

(IPCC 2014). The risk can also be determined by the probability of the hazard multiplied by the potential
negative impact that would result if the hazard actually materializes (IPCC 2014), e.g. if groundwater recharge
would actually decrease by 20&ftil 2050. Assuming a certain RCP, the probability distribution of the
freshwaterrelated climate change hazard depends on the uncertainty of computiygclimate models,

the impact of greenhouse gas emissions scenarios on the future developmdmmhafecvariables. Another

source of uncertainty are the hydrological models that are necessary to translate climatic changes into
hydrological changes. It is therefore staikthe-art to rely on secalled multimodel ensembles (MME) for
guantifying- for individuals RCRgotential future changes in variables that are relevant for climate change
risk assessments such as groundwater recharge or crop yield (Ddll et al. 2015). These ensembles consist of
the output of various models that are capable of comipgtthe variable of interest. Each model has been
driven by the output of a number of global climate models (general circulation models, GCMs) such that the
models quantify the potential climate change hazards. Assuming that each model combinationche. ea
ensemble member, is equally likely, the muttodel ensemble can be used to roughly estimate the likelihood

of certain future changes of the variable of interest. Given the uncertainties of the models, the resulting
probability distribution is again uectain (DOll et al. 2015), and MMEs may still underestimate the actual
uncertainty, for example, if only a small number of GCMs were included.
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In this handbook, we inform about provisioning and utilization of the MdEed globakcale quantitative
estimates of freshwatetrelated hazards of climate change that are freely available on th&{@T portal
(www.comicc.eu). We refer to the corresponding methods as PURiv{ding andUtilizing eNsemble
Information) methods, which encompass appropriate ways é¢biaracterizing and dealing with the
uncertainty of future hazards. A major goal regarding information provisioning is to represent uncertainty
guantitatively in a way that is both scientifically correct and meaningful to the diverse users of the hazard
information. A major goal regarding the utilization of the information is to identify approaches for integrating
information with quantified uncertainty into (participatory) assessments of waddated climate change
risks and adaptation options, also cadeying the rough representation of local conditions by global
hydrological models (GHMs).

Ideally, local to regional climate change (CC) risk assessment would be supported by MMESs consisting of a
number of local or regional hydrological models. If sutéraative hydrological models are not available, as

is the case almost everywhere around the globe, utilization of the MME output from GHMs is recommended.
Even though a local hydrological model, which is calibrated to observations, is very likelylatesohaerved
historic water flows and storages better than any GHM, it is unlikely that such a model is capable of simulating
future changes of water flows and storages with a low uncertainty. Calibration to observations does not
ensure that the hydrologal model is suitable for translating changes of climate variables such as
precipitation and temperature into changes of runoff. For example, the choice of algorithm for computing
potential evapotranspiration may strongly affect potential and thus actualpetranspiration. Equally
important, local hydrological models generally do not take into account the impact of changing atmospheric
CQ concentrations as well as of climatic changes on vegetation dynamics and thus actual evapotranspiration,
while some GMIs can do this. Therefore, to understand the range of plausible future changes at the local to
regional scale, it is not sufficient to drive a local or regional hydrological model with the output of a number
of global or regional climate models. To infotatal to regional climate change risk assessments in the
framework of climate change adaptation efforts, consequently, utilization of the MME of GHM output as
provided by the CAMICC portal is recommended. However, low spatial resolution (50 km) as well as
insufficient representation of local conditions are an impediment to usinrdViBCC portal data directly, and
suitable methods for combining @@ICC MME data with local data need to be applied.

In Chapter 2 of this handbook, we report how the MME was gateer and hev decisions about the
optimizedprovisioning of modetesults on the portal were mad@& a cedesign approach with experts and
stakeholders. We also present the list of selected hazard indicators as well as their rationale and potential
use forlocal to regional climate change risk assessment. In Chapter 3, methods for utilizing the information
and data available on the @@ICC portal are described. We distinguish utilization of the information for only
small regions of the globe as requiredsapport local to regional climate change risk assessments (Chapter
3.1) from utilization of the complete globatale information by companies with globally spread production
sites and supply chains (Chapter 3.2). We discuss in particular how the pramfdetiation on the
uncertainty of the hazards can be used for decisitaking.
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2. Methods for providing uncertain multrmodel based information on
freshwater-related hazards of climate change

2.1 Generation of the multimodel ensemble

MMEs for estimating @tential impacts of climate change have been generated in the framework of the Inter
Sectoral Impact Model Intercomparison Project (ISIMIP) initiative (www.isimip.org). In the ISIMIP2b
simulation round, a number of impact models (e.g. hydrological modedsg others) are driven by the bias

adjusted output ofGCMsfollowing a detailed simulation protocol (Frieler et al. 2017). For these outputs,

each GCM had previously been run for a number of greenhouse gas emissions scenarios (RCP2.6, RCP4.5
RCP6.0 andC¥P8.5). RCP2.6 represents an emissions scenario that is likely to constrain global warming to
about 2 °C as compared to the pralustrial period, while the RCP8.5 emissions lead to an approximate
global warming of 4 °C by the end of the 21st century. FEC®4dRCB.0 represent intermediate future
emissions and thus intermediate degrees of climate change.

The Ce@MICC portal provides information on potential future changes of a large number of hydrological
variables under these four emissions scenarios $lRCFhese changes were computed by adapting the
ISIMIP2b protocol and by using the available ISIMIP2babijasted output of four GCMs (see Appendix A)

to drive three global hydrological models (GHMSs): WaterGAP (Muller Schmied et al. 2021), LPImLygJagerme
et al. 2015) and CWatM (Burek et al. 2020). All three GHMs provide their output at a spatial resolution of 0.5°
geographical latitude by 0.5° geographical longitude, corresponding to a grid cell size of 55 km by 55 km at
the equator. They take into acoat the impact of human water abstractions and maiade reservoirs on

the natural water flows and storages on the continents. Only time series of monthly model output variables
are taken into account for the GRICC portal, mainly due to the larger uncents of daily values. All GHMs
provided output for the time period 1982099, with water abstractions and reservoirs held constant after
2005.

LPJmL differs from both WaterGAP and CWaiMhat it can directly simulatéhe impact of changing
atmospheric C@concentrations as well as of climatic changes on evapotranspiration as it simulates
vegetation processes such as the effect of, @ photosynthesis, closure of stomata or plant growth.
However, simulation of the vegetation response is uncertain, reguih considerably varying effects on
runoff and groundwater recharge among various GHMs thatialllate the vegetation responsée.g.
Reinecke et al. 2021). Therefore, it is appropriate to include a range of hydrological models in the ensemble
differingin their ability to simulate the vegetation response or in other process integrations, e.g. in the way
potential evapotranspiration or runoff generation are computed, such as WaterGAP and CWatM. To cover a
broader and more realistic uncertainty range, t8®&MICC MME does not dnencompass the simulations

of the three GHMs in their standard configuration but also simulations for each with alternative model
variants where a key mechanism parameterization is altered. In the case of LPJmL, a run withmed assu
constant atmospheric G@oncentration was added. For WaterGAP and CWatM;atandard model runs

were performed using an approach to mimic the vegetation response of global climate models with dynamic
vegetation representations by altering the poteaitevapotranspiration mechanism (Milly and Dunne 2016;
Yang et al. 2019; Peiris and Ddll, in preparation). Thus, for each of the four RCPs, 4 (&QW#)x) x 2

(GHM variants) = 24 ensemble members are available.

As an example, we consider the relatorenge in groundwater recharge in the period around 2085: for each
ensemble member, time series of monthly values of groundwater recharge between203®1 are
computed for 0.5° grid cells, which are then temporally aggregated tped0 averages for thewo time

6
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periods 19812010 and 20742099, with 19812010 being the reference period. Finally, the percent change
of groundwater recharge between the reference period and the future period is computed for each ensemble
member. Per RCP, this results in 24i@ty likely potential changes of groundwater recharge in a grid cell.
The probability distribution of relative groundwater recharge changes can then be quantified from this
ensemble, for example, by its percentiles such as the mé8@inpercentile(which may experiengee.g. a

15% decrease) or the PID™" percentilevaluethat is exceeded by approximately 90% of the 24 ensemble
members (which simultaneously may change differently, e.g30%0).

2.2 Codesign

For CGMICCa data and knowledge portal is -cieveloped with stakeholdersased onthese globatscale
multi-model simulations of hydrological variabl@$e aim of the calesign is finthg out how to make the
COMICC MME data optimally utilizable for climate change risk assessment and adaptation at different scales.
In a participgory manner, we focusean (1) eliciting the relevant hydrological hazard indicators, (2)
representing their uncertainty quantitatively in a way that is both scientifically correct and utilizable to the
diverse users of the hazard information, and (3) trepguidance on how to integrate the uncertain global
information into regionakcale assessments of waterlated climate change risk and adaptation
assessments. Adapting the tandem framework of the Swedish Environmental Institut®48i€ls et al.,
2019, participatory stakeholder dialogues includilgvenworkshops with stakeholders from focus regions

in Europe and Northern Africa, and finally with globaktying companies serve fteratively integrate the
various experiences, needs and expectasioof various regions and users. Participants included local
researchers, experts from meteorological services and decis@kers from regional and national
hydrologicaladministrations(water supply, irrigation, basin managemer@pdevelopment wastructured
through presentation, questionnaires and small discussion groups.

Together, we ceproduced 15 relevant model output variableselicing the time scales of interesind
appropriate enduser products encompassing static and dynamically generafedhiationfor a dataportal
(see Chapters 2.3 and 2.4)he globakcale information products include interactive nsagliagrams, time
series graphand suitably caleveloped statistics, with appropriate visualization of uncertaifay which we
provided examplediagrams and collected valuable feedback in breakout grolpscomplement, the
knowledge tool provides transparent metaformation, tutorials and handbook guidelines to utilize the
provided information in models of local participatory riskesssnents.

Secific feature elements sterfnom the stakeholder dialoggand include for example, explanations on the
portal and the importance of transparently and clearly communicating the meaning and calculationfbasis
provided data in an understandibway. Both mouséover tip boxes and a glossary are part of the
developed portal. Further features are the spatial aggregations for basin and country level, user selectable
seasons, and download options.

2.3 Indicator list

The final list of indicata from the process is shown in Table 1, and structured into 15 variahtksheir
specific indicatorsOn the CEMICC data portal, we provide for most indicators in the table:

1. relative change (i.e. percent change) in a specifieg & future time perid as compared to the
reference period 1981 2010 (for all ensemble membeand emissions scenarios RCP)
2. absolute change, positive or negative (foramsemble memberand emissions scenarios RCP)
3. one reference value: median ehsemble memberfor the reference period 1981 2010
7
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In general, relative changes can be computed more reliably than absolute changes and should therefore be
applied for CC risk assessment. Only if relative changes are not availabdell(becausef the ensemble
membervalue for tre reference period is zero or very smadlative changes are not sensibiEndthe cell

will be greyedout), absolute changes should be considered. Simulated changes can be combined with the
reference value to obtain a rough estimate of the indicator in future time periods. Preferably | asticzate

of the indicator during the reference period is used to obtain an estimate for the future.

Values are provided for all land areas of the globe (except Greenland and Antarctica)

The ist in Table &lso contais co-developed indications othe rationale and potential use difie indicators
for local to regional climate change risk assessment.

Tablel: Indicators for different hydrological variables computed by global hydrological modelsyeaB0
periods. They arprovided at annual time scale, for the four seasonfeoeach calendar month. CC
abbreviates climatehange

Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
1. Blue Annual Mean R: Total renewable water resources and the part o
water the precipitation that does not evapotranspie.
production Maximum amount of water available for
BWP management.
(Total U: Simulated change can be applied to local
run off from estimate of renewable water resources e.g. to
soil and compare to water demand or to serve as input to a
surface local water allocation/supply model.
water Annual High R: The maximum amount of water available for
bodies) (Q10) management that is exceeded in only 1 out of 10
years, i.e. in avet year.
Annual Low R: The maximum amount of water available for
(Q90) management that is exceeded in 9 out of 10 years.
i.e.in adry year.
Yearto-year R: The higher the standard deviation of annual
variability : BWP, the moe difficult it is to reliably fulfil water
Standard demand (which is relatively constant from year to
deviation year or even higher in years with low BWP).
Yearto-year R: Coefficient of variation = standard
variability : deviation/mean
Coefficient of If both the standard deviation and the mean
variation increase, the coefficient of variation may remain
constant.
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Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)

2 Annual Mean R: Simulated streamflowis, in contrast to BWP,

Streamflow

affected by upstream human water use and man
made reservoirs (in most GHMs). Estimates for
years after 2005 assume that water use and
reservoirs remain at the 2005 level.

U: Streamflow indicators based on annual
streamflow (mean,annual high, annual low,
interannual variability indicators) can be
simulated more reliably by GHMs than indicators
based on monthly or daily simulation results. This
is particularly true for highly managed basins with
reservoirs and high water use or evenvater
transfers.

U: To estimate the CC impact on reservoir inflow
or the ability to transfer water, change of mean
annual streamflow can be used. However, it is
likely that streamflow downstream of significant
water use, reservoirs or water transfers canot be
reliably computed by GHMs. In these cases, it is
recommended to use either naturalized
streamflow indicators at an upstream grid cell that
is not affected by human impacts or BWP
indicators as input to local risk assessments.

Annual High
(Q10)

R: Annual streamflow that is exceeded in only 1
out of 10 years, i.e. streamflow in a wet year.

Annual Low

(Q90)

R: Annual streamflow that is exceeded in 9 out of
10 years, i.e. streamflow in a dry year.

Monthly High
(Q10)

R: Monthly streamflow thatis exceeded in only 1
out of 10 months (i.e. in 36 out of the 360 months
of the 30-year period); a statistical high flow value.
It is expected that monthly Q10 streamflow can be
simulated reasonably well by GHMs.

Monthly Low
(Q90)

R: Monthly streamflowthat is exceeded 9 out of 10
months (i.e. streamflow is lower only in 36 out of
the 360 months of the 3Byear period); a statistical
low flow value.

U: It is expected that monthly Q90 streamflow can
be simulated reasonably well by GHMs.

Yearto-year

R: The higher the standard deviation of annual

variability : streamflow, the more difficult it is to reliably fulfil
Standard water demand (which is relatively constant from
deviation year to year or even higher in years with low

streamflow).

Yearto-year
variability :
Coefficient of
variation

See standard deviation
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CO-MICC (g2

Calendar month

with highest
mean monthly
flow

Only reference value and absolute change
provided.

R: Shift (in months: e.g. a shift by 1.7 month)
indicates change in streamflow seasonality.
U: To modify seasonality of locally quantified
streamflow values.

Calendar month

with lowest
mean monthly
flow

Only reference value and absolute change
provided.

R: Shift (in months) indicates change in streamflow
seasonality.

U: To modify seasonality ofdcally quantified
streamflow values.

Seasonal Mean of R: Mean streamflow in March, April and May.
1 March to May U: Particularly in highly managed basins, seasonal
2 June to August streamflow simulated by GHMs may strongly differ
3 September to  from actual values
November
4 December to
February
Calendar Meanof R: Mean streamflow in the calendar month
month 1 January January.
2 February U: Particulary in highly managed basins, monthly
3 March mean streamflow simulated by GHMs may strongly
4 April differ from actual values, even more than seasonal
5 May values.
6 June
7 July
8 August
9 September
10 October
11 November
12 December
Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
3. Annual Mean R: Streamflow simulated under the assumption
Naturalized that there are neither manmade reservoirs nor
Streamflow human water use. Simulated changes of

naturalized streamflow are expected to differ
insignificantly from simulated changes of
(anthropogenically affected) streamflow except in
highly managed basins.

U: In highly managed basins, it is recommended tc
use either naturalized streamflow indicators at an
upstream grid cell that is not affected by human

10
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Seasonal

Calendar
month

impacts or BWP indicators as inpt to local risk
assessments.

Annual High see streamflow
(Q10)
Annual Low see streamflow
(Q90)
Monthly High see streamflow
(Q10)
Monthly Low see streamflow
(Q90)

(7-day low flow)

see streamflow

Yearto-year
variability :
Standard
deviation

see streamflow

Yearto-year
variability :
Coefficient of
variation

see streamflow

Shift in high
flow month

see streamflow

Shift in low flow

month

see streamflow

Mean of

1 March to May
2 June to August
3 September to

November
4 December to
February

see streamflow

Mean of

1 January
2 February
3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October

see streamflow

11
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11 November
12 December

CO-MICC (g2

Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)

4. PET Annual Mean R: Potential evapotranspiration, i.e.
evapotranspiration occurring in the cases of oper
water and very wet soils.

U: Simulated change can be applied to local
estimate of reservor evaporation or PET
estimates in models of irrigation water
requirements.
Yearto-year
variability :
Standard
deviation
Yearto-year
variability :
Coefficient of
variation
PET/Precipitation R: Aridity indicator (the higher, the more arid)
Seasonal Mean of R: Mean streamflow in March, April and May.
1 March to May2 U: Particularly in highly managed basins,
June to AugusB  seasonal streamflow simulated by GHMs may
September to strongly differ from actual values
November
4 December to
February
Calendar Meanof R: Mean streamflow in the calendar month
month 1 January January.
2 February U: Particularly in highly managed basins, monthly
3 March meanstreamflow simulated by GHMs may
4 April strongly differ from actual values, even more
5 May than seasonal values.
6 June
7 July
8 August
9 September
10 October

11 November
12 December

12
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Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

5. AET Annual

Seasonal

Calendar
month

Mean

R: actual evapotranspiation from canopy, soil
and surface water bodies

Yearto-year
variability:
Standard
deviation

Yearto-year
variability:
Coefficient of
variation

AET/Precipitation

R: Fraction of precipitation that is actually
evapotranspired

Mean of

1 March to May2
June to AugusB
September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

6. AET/PET Annual

Mean

Note: AET and PET are computed as a mean over
every grid cell which may consist of both surface
water bodies and land. Therefore, theatio of

actual over potential evapotranspiration isnot a
measure of water stress ofregetation.

13
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Seasonal

Calendar
month

Yearto-year
variability:
Standard
deviation

Yearto-year
variability:
Coefficient of
variation

Mean of

1 March to May
2 June to August
3 Septanber to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator Rationale (R) and potential use for local to
regional CC risk assessment (U)

7. Annual
Groundwater
recharge

Mean R: Renewable groundwater resources, i.e. the
maximum amount of groundwater that could be
used without causing a continuing loss of
groundwater storage and groundwater table
decline.

U: Percent change can be applied to local
estimate of groundwater recharge from soil.

14
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Variable

Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

8. Sail
moisture
saturation

Annual

Seasonal

Calendar
month

Mean

R: sd water content /maximum soil water contena
measure of water stress for vegetation.

Mean of

1 March to May
2 June to August
3 September to

November
4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable

Time
scale

Indicator

Rationale (R) and potential use for local to
regional CC risk assessment (U)

9. Show
storage

Annual

Seasonal

Mean Storage

U: Meanannual snow water storage is not relevant
for water supply; rather, change in snow storage a
the end of the snow season is relevant. Seasonal
calendar month snow storage should be used.

Number of
months with
snow

Mean of

1 March to May
2 June to Augus
3 September to

November
4 December to
February

15
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Calendar Meanof
month 1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September
10 October
11 November
12 December
Variable Time Indicator Rationale (R) and potent ial use for local to
scale regional CC risk assessment (U)
10. Net Annual Mean R: The mean amount of water thaits additionally
irrigation evapotranspired due to irrigation if enough water
requirement can be supplied to allow for optimal irrigation.
NIR Different GHMs assume different crops and
growing periods.
U: Simulated change can be combined with
current, local estimates of NIR.
Annual High R: Annual NIR that is exceeded in only 1 out of 10
(NIR10) years, i.e. NIR in a dry year.
Annual Low R: Annual NIR that is exceeded in 9 out of 10
(NIR90) years, i.e. NIR in a wet year.
Yearto-year R: An increase in standard deviation is likely to
variability : make a reliable water supply more difficult.
Standard
deviation
Yearto-year See standard deviation
variability :
Codficient of
variation
Variable Time Indicator Rationale (R) and potential use for local to
scale regional CC risk assessment (U)
11. Annual Mean
Temperature

16
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Seasonal

Calendar
month

CO-MICC (g2

Mean of

1 March to May
2 June to August
3 September to
November

4 December to
February

Mean of

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable

Time
scale

Indicator

Rationale (R) and potential use for local to

regional CC risk assessment (U)

12.
Precipitation

Annual

Mean

Yearto-year
variability :
Standard
deviation

Yearto-year
variability :
Coefficient of
variation

Calendar month
with highest
mean monthly
precipitation

provided.

Only reference value an@bsolute change

R: Shift (in months) indicates change in
precipitation seasonality.

Calendar month
with lowest
mean monthly
precipitation

provided.

Only reference value and absolute change

R: Shift (in months) indicates change in
precipitati on seasonality.

17
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CO-MICC (g2

RO5T R: represents the contribution the heavy
precipitation days generate to the total
precipitation. Changes indicate a shift to more or
less extreme precipitation patterns, i.e. where
precipitation might concentrate in more intense
events.

U: to identify initial areas which could be prone to

increased risk of flooding, and for which an in

depth flood risk assessment might be relevant
Seasonal Mean of

1 March to May

2 June to August

3 September to

November

4 December to

February

Calendar Meanof
month 1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

Variable Time Indicator Rationale (R) and potential use for local to

scale regional CC risk assessment (U)
13. Water Annual Mean Absolute change and actual index value provided
scarcity (and reference value).
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February

Meanof

1 January

2 February

3 March

4 April
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Time
scale
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Rationale (R) and potential use for local to
regional CC risk assessment (U)

14. Water Annual

stress
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Mean

Absolute change and actual index value provided
(and reference value).
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Calendar
month

3 September to
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4 December to
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Meanof

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

Variable Time
scale

Indicator Rationale (R) and potential use for local to
regional CC risk assessment (U)

15. Water Annual
availability

Seasonal

Calendar
month

Mean I AAT 160 CAT AOAOAA xAO
plus accumulated inflow from upstream cells with
already deducted upstream water use
(anthropogenic streamflow) and incorporating an
environmental flow requirement (80% of
naturalized streamflow to remain in river)

Yearto-year
variability :
Standard
deviation

Yearto-year
variability :
Coefficient of
variation

Mean of

1 March to May
2 June b August
3 September to
November

4 December to
February

Meanof
1 January
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2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September
10 October
11 November
12 December

2.4 User interface of the datportal

The C@MICC data portal is an interactive platform that offers the user a considerable degree of flexibility as

to the hazard indicator selection, the definition of the MME and the type of visualization. As shown in Figure

1, it encompasses a metar on the left, a data viewer in the form of global maps and a tool for further data
analysis in the form of various graphical representations{glp) 6 A Y R2 g KSNBF FGSNJ O f f
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(O-MICCQ Climate | CO-MICC Data Viewer v

«p» M 2020 ce

e=—---—-— > "-55}
Figurel: Frontend of the CAMICC data podl: a menu bar on the left, and data viewer with the global
maps.

The hazard indicator is specified through the usage of four -dampn menus (Figure 2a) to select the
hydrological variable, the time scale (annual, seasonal or mgnyl the statistic(s) to be calculated. Lastly
the modus can be changed (for most indicators, the choice can be made between relative and absolute
changes as compared to the reference period). The definition of the MME is done by means of two selection
menus (Figure 2b); one to specify the combination of RCPs and the other of GHMs. In both cases, all
combinations are possible. By default, all possible GCMs and GHM variants are included (see Chapter 2.1).

a) b)
Indicators @ Model Selection €

Variable @ Representative Concentration Pathway €@

Precipitation v 260

Time scale 450

Annual v 600

850

Statistics
Mean o Hydrological Model €@
CWatM
Modus @ LPJmL
Relative Changes v WaterGAP2

Figure2: Menu optiongo select the hazard indicator and the mutiodel ensemble. a) Dragpwn menus
for the selection of the hazard indicator. In the present example, the selected indicator corresponds to the
relative change of mean annual precipitation between the referanckthe future period. b) Menus for the
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selection of Representative Concentration Pathways (RCPs) and Global Hydrological Models (GHMS). In the
present example, only one RCP, namely RCP2.6, and all three GHMs are selected to be part of the ensemble
to bedisplayed.

By default, the data viewer displays the data corresponding to all grid cells globally. However, it can be the
case that the user is only interested in the data in the cells corresponding to major basins. In that case, the
user can define a mimum basin size by means of a slider, enabling in this way the selection of relevant
basins (Figure 3).

Basin Size (km2) ©

3,943,754

/0
0 5,000,000

Figure3: Slider to set a minimum threshold for basin size.

Furthermore, the user has the choice between multiple spatigjregation options. The selection is done
through a dropdown menu (Figure 4). By default, the data viewer shows the data without any spatial
aggregation, i.e. the data corresponding to each individual grid cell. In addition, the user can choose to have
the data aggregated at the scale of predefined basins (approximately the largest 300 basins are included) or
basins defined by each cell, i.e. corresponding to the upstream area of each cell.

Aggregation @

Cell v

Figure4: Dropdown menu to seleche spatial aggregation of the data.

The uncertainty of the MME data is represented in different ways in the portal, for both the map and cell
displays. They therefore include several options in theHaftdside menu as well as some of the diagrams
avaibble in the raster cell box. The visual representation of uncertainty is described in more detail in Chapters
2.4.1and 2.4.2.

2.4.1 Data viewer

The maps show the selected hazard indicator by different colors according to a legend located in the bottom
right corner of the data viewer. The legend is characterized by a diverging color scale with classes
representing smaller numbers in light colors and classes representing larger numbers in dark colors. The
range of the class containing the midpoint of #ale (i.e. zero) is deliberately small as it represents the case
where there is no significant change or a very small change. The number of classes, which varies between 8
and 13, and the class breaks have been predefined after careful consideratiom imptielers. The indicator
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values are provided for different spatial aggregations:

1) for each 0.5° grid cell

2) aggregated over countries, where each grid cell pertaining to a country shows the country average
value of the indicator

3) aggregated over predefined bis (approximately the largest 300 basins are included), where each
grid cell pertaining to a basin shows the basin average value of the indicator

4) aggregated over cefipecific basins (i.e. drainage basin of each cell), where each grid cell shows the
upstream area (including the cell itself) average value of the indicator

When hovering with the mouse over a cell, a text box with the cell coordinates appears in the bottom left
corner of the data viewer. Buttons to zoom in and out, to switch between diftebackground layers and

to download the data (as a CSV file) and map (as a PNG file) are also included. Furthermore, a time slider and
animation option in the lower part of the data viewer allow the user to move through time.

Regarding the uncertaintyfahe MME data, some of the elemenits the lefthand side menu have been
explicitly designed to integrate this type of information in the map disg@lag.NJ Ay aidl yOSs (GKS a&
(Figure 5) allows the user to set a minimum threshold for the@atage of MME members agreeing on the

sign of projected change (positive or negative), below which data in a cell is not displayed. For example, if
the user sets the reliability slider to 75%, this means that at least three quarters of all MME membeérs nee

to agree on the sign of change; the grid cells for which this condition is not met are filtered out in the data
viewer. This option gives the user the freedom to set the condition that defines whether the forecast given

by the selected MME is reliable aot. The filteredout cells are considered to contain data that is too
uncertain and thus unreliable.

Reliability €

I
50 100

70

Figure5: Slider to set a minimum threshold for the percentage of amitidel ensemble members agreeing
on the sign of charg

Moreover, instead of only one type of value describing the MME change, the user can choose between
displaying the ensemble median (default option), the ensembl& pércentile or the ensemble 90
percentile by the means of a drapwn menu (Figure 6)n this way, the user can get a picture of the MME
data uncertainty.

Uncertainty @
Ensemble P90 Change v

Figure6: Dropdown menu to select the multhodel ensemble value to be displayed.
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2.4.2 Raster cell box

The raster cell box is displayed over the dagwver when clicking on a specific location. A menu on the left

of the box offers a selection of different graphical representations that thesuser choose from, depending

on the type of information thathey wishto visualize (temporal evolution, compson between different

RCPs or GHMs, probabilities etc.) and hbey want it to be displayed (e.g., time series, box plots). These
graphical representations can be classified into three chart type categories: curves, box plots and\&bles.

for maps, ti is also possible to download the graphs (as PNG files) and related data (as CSV files) generated
with the raster cell box.

By default, the data is displayed in the form of a time series (curve chart) with-dltés yepresenting the
relative (or absolw) change and the-axis the climate period centre (Figure 7). Each data point corresponds
to the change averaged over the -$8ar period defined by its centre year. For example, the year 2030
actually refers to the climate period 202944. The MME medias represented as a line. Furthermore, two
levels of shading around the curve are given; the darker shading represents the spread of the individual
solutions between the 25and 7% percentiles, and the lighter shading the spread between thédtd 90"
percentiles. In this type of representation, information about the uncertainty is given by the shaded areas.

Figure7: Time series displayed in the raster cell box.

Another option to display the data is a chart type calied 2 E  LJ 2(Gé & . 2E LI 20G& I NB
distribution of multiple sets of data. The user can choose to display box plots to compare the distribution of
MMEs corresponding to different RCPs or to different GHMs (Figure 8). In this way, it is fjossilalize

the uncertainty related to the choice of RCP and to the choice of GHM.

A box plot shows the distribution of the values of a given data set. It is composed of a box and two whiskers
(i.e. lines extending from the box). The box gives a tma@aber summary of the distribution, namely the

median (or 56 percentile), and the 25and 73" percentiles (or first and third quartiles). In a box plot drawn
vertically (a box plot can also be drawn horizontally), the bottom and upper ends of the heseapthe

25" and 79" percentiles, respectively, and the median is represented as a dark bar within the box. The
bottom and upper whiskers show the l@nd 90" percentiles, respectively.
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QO-MICCE  cimae

Filter < Relative change in Mean Annual Precipitation
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13123 S 347N 4148°E 10089.18 km?

Cell Information 9. mmfy . (I 2, e

CLL

M b M 2020 co

Figure8: Boxplots displayed in ¢hraster cell box.

Moreover, the MME data can also be visualized in the form of a table. Three types of value are given in the
table, namely the median and the ®t@nd 90" percentiles. Values are given for all projectedy@@r periods
and for all RCHadividually, showing in this way the uncertainty related to the choice of RCP.
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3. Methods forutilizing uncertain multtmodel based information on freshwater
related hazards of climate change

I O0O2NRAY3 G2 Lt/ / O6HnmnZI lideradyé & potehtial inPakts, ¥idudidg lo& ¥ G K
probability outcomes with large consequences, is central to understanding the benefits andoffadu
FEOGSNYFGAGS NARAA]l YI yl 3SYSynodel Orisemdlg meard shoud BadBze? NS >
but also less likely outcomes with a high risk, i.e. outcomes that may have strong negative impacts. MMEs
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For example, in a case where a certd@trease in a statistical low streamflow (e.g. monthdy) @ould put

the production of safe drinking water at risk and require investment in additional water supply infrastructure,
stakeholders with a high safety requirement may decide in favour ofrthestment even if only 10% of the
ensemble runs project such a decrease over the design period, while stakeholders with a low safety
requirement may only invest if at least 50% of the runs do this.

A first step in climate change risk assessment is thenidiefi of relevant risks, with the formulation of the
specific risks of what and for whom. For example, a risk for water supplier could be formulated as the risk of
certain increases in the frequency of water use restrictions caused by a lack of watér supphanging
climate, e.g. from 4n-10 years to 4n-5 years, as suggested by Borgomeo et al. (2016, 2018) in a case study
of water supply in the British Thames river basin. In the next step, risk was quantified by using a sophisticated
water supply noedel that was driven by an ensemble of climate scenarios as well as scenarios of water
demand. Then, adaptation measures such as the construction of water reservoirs were implemented in the
model to see their effect. Finally, the cost of adaptation measwreuld be related to their risteducing

effect, i.e. to what extent they could reduce the otherwise increased frequency of water use restrictions. A
more simple risk metric is, for example, the ratio of water demand over water resources. Even hazard
indicators such as the change in statistical low streamflow values (e.g. indicat@t@pter 2.3) can be used

as a risk metric for the welleing of the exposed freshwater biota.

To guide the user optimally, in this chapter we distinguish utilization efitfiormation into two broad
categories, specifically utilization of information for small regions as compared to utilization of the complete
globalscale information. Both are associated with different target user groupsp@ated methodsind
supportdifferent kinds of risk assessmenis)d are described in the respective subsections in this chapter.

3.1 Local to regional climate change risk assessments

Once the relevant local freshwateelated risks of climate change have been formulated,uidiclg the
causative changes in specific water flows (e.g. streamflow) and storages (e.g. soil moisture), suitable
hydrological hazard indicators need to be determined. For example, the change of mean streamflow during
the summer season might be critical f@ specific risk. Then, as indicated in Chapter 1, local climate change
risks assessment and management would ideally be informed by the mean summer streamflow changes as
projected by a MME consisting of various local (or basade or regional) hydrologal models that are fed

by climate change scenarios from a range of global (and possibly regional) climate models. If such MMEs are
not available, there are methodsf utilizing the information provided on the G@ICC portal in local to
regional freshwaterelated climate change risk assessment.

If there is very little local information available, which is often the case in particular regarding hydrological
variables such as soil moisture or groundwater recharge, direct use of the 0.5° grid scale pearg@s of
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hydrological variables as provided by the-RIG@C ensemble provides informative input to local to regional
climate change risk assessments. However, it is preferable to combine the spatially coarse-rwhhdata
available at the CMICC paal with local information and data in a meaningful way. Chapter 3.1.1 describes
how this can be achieved in a simple way. In Chapter 3.1.2, more sophisticated and costly options are
presented. In Chapter 3.1.3, we present howl@{@C MME data can be igiéd byBayesian Belief Network

(BN) modeling for local (to regional) risk assessments. With this approach, local climate change risks can be
estimated in a probabilistic manner, thus explicitly taking into account uncertainty. We provide a specific
exampe of how the CaMICC MME data can be integrated into the BN to compute climate change risks for
water supply. This example is applicable in case there is no local or regional hydrological model available.

3.1.1 Simple approaches for combining @&OCC M/E data with local data

Values of hydrological variables, computed by driving GHMs by GCM output, such as, for example, of
streamfow during the reference perigdn most cases do not fit well to loestale observations. One reason

is that due to the stohastic and chaotic character of weather, it is impossible for GCMs to simulate the
historic weather exactly. Other reasons are model uncertainties of GCMs and GHMs. Even after bias
adjustment of GCM output (daily temperature, precipitation, etc.) usingeobatiortbased historic climate

time series, the historic time series of simulated climate variables of a certain GCM may differ appreciably
from both observations and the output of other GCMs. GHMs driven by climate scenarios can provide,
however, robustinformation on hydrological changes due to climatic (and other) changes, with relative
changes likely being more robust than absolute changes, as the absolute values during the reference period
differ among GCMs and from observations. To estimate a pleusinge of future values of hydrological
indicators, we therefore recommend combining the best local estimates of hydrological indicators (HIs) of
interest (e.g. mean groundwater recharge, snow storage in March, net irrigation requirement in the summer
season or the annual streamflow that is exceeded in 1 out of 10 years) with percent changes of these
indicators from the C®ICC MME. Applying each of the e€4.estimates of percdrchangein hydrological
indicator HI (one per ensemble member) separatétg ensemble of future local HI is calculated as:

HI_local (future time period) (ensemble member i) = HI_local (reference time period best local estimate) * (1
+ percent change of HI of ensemble member i/ 100YEq. 1)

However, this approach may natdd to meaningful information for all hydrological hazard indicators. For
example, GHMs cannot simulate well the seasonality of streamflow in highly managed basins with large water
abstractions and mamade reservoirs, or even water transfers out of thesiba In this case, the MME
percent changes of e.g. streamflow in May should not be used for local risk assessments. To assess season
specific hydrological changes in such basins, it is required to use a local hydrological and water supply model
to translae MME changes to changes in local dynamics.

3.1.2 More sophisticated and costly options

In many catchments or river basins, there exists a good local hydrological and/or water supply system model
that takes into account the management of reservoirs, watlkstractions and water transfers. In this case,
there are many options for combining information from the-8GCC MME with the local model. The choice

of option depends on the model and the local conditions. Downscaling of the 0.5° output of tMI@D
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ensemble with a local hydrological model can be achieved by usidlCO MME percent changes of annual
GofdzS 6+ GSNI LINPRAzOGAZ2YE 6.2t 3 SldA@IESyd (2 GKS
(see Chapter 2.3). The total runoff estimaitef the local model within each 0.5° grid cell for the reference
period can be scaled with the 0.5° percent changes of theM@ MME, such that for each ensemble
member and 0.5° grid cell, the percent change of the mean annual total runoff of tharlodel is equal to

the value of the corresponding @@CC ensemble member. In this way, a major signal of climate change
that is known tovary widely among GCMs and GHMgepresented by the local model simulations. However,
changes in seasonality and ethtemporal variabilities as driven by climate change are not taken into
account. Alternatively, changes in mean monthly naturalized streamflow in 0.5° grid cells (12 values per grid
cell) could be utilized for scaling time series of temporally and shatiadre highly resolved streamflow that

is computed by the local model for the reference period. Then, the local supply model would be run for the
whole reference period with implementation of the scaling factors from eachM@TC ensemble member.
This wil produce a number of local model results for the selected future time period, one for eabhlCO
ensemble member, and thus a range of potential futures of streamflow at the spatial and temporal resolution
of the local model.

If there is a local waterupply system model that simulates the operation of reservoirs and water abstraction,
MME data on changes of mean monthly naturalized streamflow upstream (see Chapter 2.3) of the most
upstream reservoir and of significant surface water abstraction canée as input to the local water supply
system model. To compute future hydrological conditions, the inflow into the most upstream reservoir
simulated by the local model for the reference period could be scaled, separately for each calendar month,
with percent changes of mean monthly naturalized streamflow of eachMIOC ensemble member
individually, according to Equation 1. For each calendar month of the time series, the same change factor is
applied. This generates six local streamflow time series for eagte time period and RCP that then serve

as input to the local water supply system model. In case of irrigation water use, the percent change of net
irrigation requirement of the CAMICC ensemble could also be taken into account to scale water atistract

or consumptive irrigation use as computed by the local model. Then, the local supply model would be run for
the whole reference period, driven by the scaled inflow (and irrigation water abstractions). This will produce
local model results over the sated future time period for each GRICC ensemble member, i.e. an
ensemble of local model runs for the future time period and a range of potential futures of e.g. reservoir
outflow or water demand coverage.

A popular water supply or rather water alldan model is the WEAP (Water Evaluation and Planning)
software (ww.weap21.org, partly because it is freef-charge for lowincome countries and relatively easy

to set up. WEAP requires upstream streamflow datar{thly time series) and then computes the demand
coverage of water demand sites that are distributed along the stream network, also taking into account
reservoirs. To estimate the impact of climate change on water demand coverage, the local best egtimate t
series of upstream streamflow for the reference period is modified using the percent changes of mean
monthly naturalized streamflow to generate local streamflow time series for a future time series. This
approach is the same as suggested in the lasagraph for application with local water supply system
models.
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3.1.3 Byesian Belief Network Modelling

Local climate change risk assessments are best supported by a quantitative integration of physical hazards,
exposures and vulnerabilities that includéhe characterization of uncertaintiedsingBayesian Networks

(BNs) for this tasiks a suitable approach as theailableMME output can be integratednto BNs, in order to
probabilistically assess risks ferg.,water supply.

Bayesian Networkare acutting-edge integrated modelling approach (Terzi et al., 2@igspohl et al., 2032

to deal with uncertain and complex domains such as climate change by estimating probabilities of risks (Phan
et al., 2016; Sperotto et al., 201 BNsare a formal repreentation of the joint probabilistic behavior of a
system conditioned by deeply uncertain but potentially useful information about the future (Lempert, 2004;
Taner et al.,, 2019)Theycan (1) combine quantitative multhodel output data and qualitative erpt
knowledge, (2)nherentlydeal with uncertain multmodel ensemble projections and other system variables
through their representation with probability distributions, (3) include multiple stressors and endpoints, (4)
compute alternative scenarios forater availability and demand, and (5) take into account the effect of
adaptation policies on climate change risks (Sperotto et al., 201iHe past two decades the use of Bayesian
Networks in many environmental fields with a risk assessment perspdasdeen exponentially growing
(Phan et al., 2016) and Bayesian networks are increasingly being integrated with other modeling constructs
and tools (Marcot and Penman, 2019). Phan et al. (2016) found 111 originatgpemred papers published

from 1997 b 2016 dealing with Bayesian Networks in the field of water resources. Sperotto et al. (2017)
reviewed 22 publications dealing with Bayesian Networks for climate change risk (or impact) assessments
and management.

In this hapter we use an example of a-developed Bayesian Network Model from a stakeholder dialog with
water experts from the Maghreb countries (Chapter 2.2) to show how such a BN can be set up. This focuses
on how to integrate CaICC MME data into a BN to obtaanstateof-the-art representaion of climate

change hazards and their uncertaintiesd the involvement of experts in the BN development. For the
example, pojected relative changes in runoff, groundwater recharge and net irrigation requirefnemt

the MMEwere processed using MATRAtaking into account local information on historic water availability

and use. Probability distributions of risk levels under historic and future climate and water use were co
developed with experts from the Maghrelwvho positively evaluated the BN apgdition forlocal dimate

change risk assessmeni$e presented approach thus suitable for application in the marigcal dimate

change risk assessmemscessary for successful adaption to climate change woidie.

3.1.3.1 Method and calesign

A linked chain of models informed by tHdME output, literature data and local expert knowledge and
literature data can be usedio assess the probabilistic risk of climate change for water supply from
groundwaterand from surface water (Figur§.9ur method onsisted of six steps: (1p-@efining the real

world problem, the key risks, the structure thfe system to be modeled including its boundaries and its
spatio-temporal extents and resolution as well as the system variables, (@g¢weloping causal netwks,

(3) cadeveloping the Bayesian Network model structure including gathering data from literature and our
multi-model ensemble, (4) setting up the Bayesian Network model based on computations with the software
tools MATLAB and Netica, and (5) simulatheggBayesian Network model with Netica under reference and
future conditions, computing risks under different climate change and water use scenarios.
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Figure9: Steps 1 to 6 (blue numbers) of local climate change risk assesdoyeBBN modeling, with the three

4

Computing class sizes of variables

knowledge sources local expert knowledge, rmaltidel ensemble and literature.

Local expert knowledgis integrated in steps 1, 2, 3 andil our participatory process (Figure.9dt was
elicited during individual intereivs and two expert workshops with scientific presentations, guided

discussions and breadut groups Table2).

Table2: Expert involvement.

Number
of local
experts

Type of
interaction

Location

Duration Date

Topic

Semi-
structured
expert
interviews

Tuni (Tunisia)
Algiers

13 Marrakesh,
Mellal, Casablanca
(Morocco)

(Algeria)

10 days, 2
hours per
interview

May

Beni 2018

1) Tasks, responsibilites and challenges of
expertds organization

2J Expert 6 s jpceptidnlofethe siuation
and challenges in the country

3) Co-development of causal
representing the situation

4) Information needs to support the country in
climate change adaptation in the water sector

5) Data availability and needs, time frame for
planning of the organization

networks

Workshop | 6

Le Mans (France)

November

1.5 days 2018

1) Presentation of causal networks

2) Introduction to Bayesian Networks and
presentation of first Bayesian Network structure

3)Agree on expertos in
data provisioning

Workshop I 7

Tunis (Tunesia)

October

2 days 2019

1) Presentation of further developed Bayesian
Network

2) Co-development of possible risk indicators,
further variables and qualitative classes

3.1.3.2 Cedeveloping causal networks

During expert interiews, causal networks anfluence diagramesere createdas perception graph®garding
climate change impacts on watftom the point of view of the expefl &
They areuseful during the interviews in elucidating the peption of each expert in a concrete way and
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visualize it.All causal networksaken together weretranslated into a Bayesian Network structungext
section taking also into accourthe most important factors and relationships reported in literature.
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Figurel0: Causal networks of three experts, depicting actions (recta)m@mtors (oval, nowolored boxes)
and goals (oval, colored boxes).
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3.1.33 Codeveloping the Bayesian Network structure

A BN model is a probabilistic graphical debfor which a graph expresses the conditional dependence
structure anong variables. It consists fo main components: (1) the structure of the Bayesian Network,

i.e. a directed acyclic graph that consists of a set of nodes representing the systebiegaand a set of

arrows indicating the relationships between the system variables (Phan et al., 2016), and (2) conditional
probability tables or deterministic expressions that represent how one system variable depends on the state
of another variable, ths quantifying the links in the graph (Phan et al., 2016). Each variable is described by
distinct classes of values or states and the probability of the variable belonging to each class. For Bayesian
Network modelling we used the software Netica (http://wwwarsys.com/netica.html).

The developed Bayesian Network model structure with variables, clasgdks is shown in Figure.Ilwo

risk nodes are placed at the bottom of the net (red boxes) and were defined for groundwater and for surface
g GSNEY af 8Bt 2F INRdzy RglF GSNJ a0 NDAGeé |yR aNRaij
gualitative risk nodes only depend on quantitative groundwater and surface water scarcity indicators,
respectively (pink boxes). The groundwater scarcity iridida computed as the ratio of annual groundwater
abstractions (under longerm mean annual climate) to loAgrm mean annual groundwater recharge. The
surface water scarcity indicator is computed as the ratio of surface water abstractions (undésiongean
annual climate) to longerm mean runoff. Given the high uncertainties of runoff and groundwater recharge
estimates for theparticularbasin in the reference period, and to keep the complexity of the BN low, we
assumed that mean annual surface wagesailability is equal to mean annual runoff anid dot take into
account that itmay be reduced due to a decrease of groundwater discharge that is caused by groundwater
use.

The water scarcity indicators are the child nodes of nodes representing phyarzads (blue boxes) as well

as vulnerabilities and exposures (yellow and green boxes). The three hazard nodes are: Net irrigation
requirement change due to CC, groundwater recharge change due to CC and runoff change due to CC. The
yellow nodes are roatodes that representing water ugelated vulnerabilities and exposures which require
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input from experts, while the green ones are child nodes computed by the BN model. The model structure
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gound YR & dzZNFI OS 4 SNEZ 6KAOK ySSR G2 o06S aSi oe
period and RCP and a specific ration of groundwater to surface water use. Except for these two, all other
nodes areprobabilistic nodes.
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Figurell: Bayesian Network model with nodes representing: 1) RCP and future time period (orange box), 2)
physical hazards (blue boxes, informed by nmtidel ensemble), 3) exposures and vulnerabilitieseldped

from expert knowledge and literature (yellow boxes), 4) computed intermediate variables representing water
use (green boxes), 5) key risks indicators (pink boxes) and qualitative risk levels (red boxes). CC denotes climate
change. Stars denote thieot nodes for which absolute values for the reference period need to be specified

to allow computation of the key risk indicators (see section 3.1.3.4). These nodes require an absolute value
[m3] for the reference period. The child nodes do not requimebability table, just an equation is entered.

3.1.34 Setting up the Bayesian Network model

As input for the Bayesian Network model we used data fravtMiE (Chapter 2 and data fromiterature and
expert knowledge.

Regarding the latternput of thewater supply risk BN encompassed data on water resources, water demand

and management in the study area during the reference period. A literature review and knowledge of local

experts served to provide absolute values of all BN variables for the refepemnicel, as these are required

to compute the two selected key risk indicators, 1) a groundwater scarcity indicator, the ratio of groundwater
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abstractions to longerm mean annual groundwater recharge and 2) a surface water scarcity indicator, the
ratio of surface water abstractions to surface water availability. In addition, published expectations of change
for management and water demand nodes were reviewed as the basis for plausible ranges of change in the
designed scenarios.

Setting up a BN model reqgas input information for each node in two steps: (i) defining the classes of each
node and (ii) entering the probability distribution either directly (for root nodesy ahere it depends on

the parent nodes; in the form of conditional probability tabse(CPTs) for child nodes. Defining classes
includes extracting loweand upperclass boundaries and a uniform class size, based on the occurring range
of values for the respective variable. This range can be either defined by the given input data frooitthe
model ensemble or from literature, or by the passed down, combined ranges of parent nodes. Therefore, the
required information and our process below differs slightly for the different types of nodes in the network.

In general, standard Bayesian Netk software such as Netica is not suited to extract information for
defining classes of a root node from a given ramitidel ensemble or other data source. Instead, Netica
requires this information to be entered manually. Nor is it able to calculate dbesgraph the optimal class
boundaries of nodes depending on the ranges of values in the parent nodes. Therefore, we used the software
MATLAB for calculating the required input into Netica for the different node types

- Root nodes (representing physicalf@Zards, derived from multhodel ensemble outputBased on
the ensemble of future relative change values from the mmitidel output and the absolute
reference value from literature, uniform class boundaries were calculated in the form of relative
change and of absolute values for input into Netica. In addition, the probability distribution of
changes in the three hydrological variables was computeddoh RCP (orange box in Figurg idr
future periods the probability distribution was calculated &ach individual RCP and for all RCPs
mixed together, assuming that each G@QWM model combination is equally likely. Fbist each
output value of themulti-model ensemble members was assigned to its corresponding class and the
probability for multimodd ensemble members to be in one class was calculated (e.g. a result of 8
out of 64 ensemble members in one class represented a 12.5% probability). For the reference period
the distribution was manually set to 100% in the class of zero change.

- Root nodes fgosure/vulnerability, starred yellow node8ased on the absolute reference value
and respective scenario ranges of relative change, class boundaries were calculated in the form of
relative changes and of absolute values as well.

- Child nodes (green nodeBased on the minimum and maximum class boundary, the absolute
reference value of each parent node and the quantitative relationship between the parent nodes,
the absolute reference value for the reference period of the child node and the class bowndarie
were calculated.

- Risk indicator nodes (pinkJlass boundaries and absolute reference values were calculated as for
other child nodes. In addition, the uniform class boundaries over the range of occurring values
obtained by MATLAB were manually adjustedeflect details around actual critical thresholds after
assessing the occurring values. Adjustment included the number of classes andifosm class
sizes.

- Risk nodes (redfFor the actual risk node, a meaningful aggregation of the risk indicatssedavas
performed, to enable effective risk management and decisi@aking. Four classes (green, orange,
LAY 12 NBRUOU NBFfSOGSR GKS dzaSNRa &aLISOAFAO OAS
unacceptable performance; the assigned thresholds defite class boundaries.
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For each node type, we selected an appropriate number of classes (blue: 10, yellow: 5, green: 10, pink: 20,
red: 4) considering data availability and detail needed. In general, the more precise the knowledge, the more
refined the resolution in a node.

The MATLAB result for probability distributions of barel yellow root nodes (Figure ltharked by stars)

was then transferred into the conditional probability table of the respective node in Netica. Each climate
scenario (referencegqgiod, future periods with RCPs individually or equally likely) yielded a row in the table;
here, the current period was set manually to 100% in the class of zero change. The probability distribution of
all downgraph child nodes (variables computed frother variables, i.e., green nodes in Figure) 14 given

in conditional probability tables. These were computed by Netica based on specific equations describing the
guantitative relationship (e.g. additive, subtractive, etc.) between the parent nodes wigidhenteredinto

the software. For the risk nodes (red), the conditional probability tables comprised an aggregation of the
values from the risk indicator node (pink) into the four classes. The Netica computation of the CPTs was based
on 10 samples pecell.

3.1.35 Simulations and probability distributions of risk levels

The Bayesian Network model was first used to determine probability distribution of the groundwater and
surface water scarcity and thus the respective water supply.rigfscificallysevenscenarios and whaf

cases were calculated, combining different RCP scenarios in the orange selector node and water use
scenarios selected in the yellow root nodesither deterministically or equally likely (sd¢égure 12).
Comparing the risks between the reference period and the future period for the six scenarios enables to
understand how risks for water supply may develop in case the different scenarios became true.

1 2 3 5 6 7
Name Ref Ref 2.6_Ref Equal_Ref 2.6_Best Equal_Equal 8.5_Worst
Period Reference Future Future Future Future Future
Climate Reference (RCPs RCP 2.6 RCPs equally RCP 2.6 RCPs equally RCP 8.5
equally likely) likely likely
Water
use Reference Reference Reference Best case Equally likely Worst case

Figure1l2: Scenarios gerated in this study combining different scenarios of climate change between the
reference period 1982010 and the future period 2052079 with reference water use and with changing

g GSNJ dzaS a0SyINA2ad a{ OSy I NAtathewéndithods dyfidgiihe tefgrenceO (i dzl
period

Results of probability distributions are shown fbe two risk levelnodes ¢ the Bayesian Network (Figure
13). Results show the change in the probability range for the future scenarios compared to thenoefer
scenario (Ref_Refl'he BN could further be used to determine the impact of a certain action of policy
measure on risk, by assessing the impact on risk from a change in a specific node.
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Figurel3: Cumulative probability distributions of risk levels for the nodes (a) risk of groundwater scarcity
and (b) risk of surface water scarcity for seven scenarios.

3.2Globalscaleclimate change hazard ahrisk assessments

The CeMICC portal provides data and visualizations for 0.5° grid cells or aggregations of these cells (Chapter
2.4). These data and visualizations can be directly used without any downscaling to fulfill various information
needs. Scidists and educators are potential users of the information on the wide variety of freshwater
related hazards of climate change provided on the-MIOC portal. Companies with globadigread
production sites and supply chains can use the information far thiater footprint and life cycle analysis.

3.2.1 Utilizations by educators, hydrological consultants and scientists

Those wishing to educate others about freshwatelated hazards of climate change in their country or
world-wide can select hydrologicaariables of interest such as soil moisture or groundwater recharge and
then zoom into the region of interest. They can then download the visualization shown on the screen and
use the graphics in their educational efforts.

Hydrologists working e.g. as catants or engineering firms may prefer to download the MME values of
freshwaterrelated climate change hazards directly, to use them for their professional purposes. Scientists
outside of hydrology are also likely to download the values for specifigblasi of interest to them. Examples
are freshwater ecologists, who require information on potential streamflow changes as this affects suitability
of streams as habitat for freshwater biota. Terrestrial ecologists interested in riparian vegetation wsxuld al
download streamflow data, while those interested in forests and other vegetation would like to analyze soil
moisture changes. Groundwater recharge changes are of interest to global energy modelers who want to
assess the potential for the productiontofdrogen, while streamflow changes are of interest for hydropower
production.
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3.2.2 Utilization by global companies
3.2.2.1Introduction

With climate change being considered as one of the most prominent challenges the world is facing today,
global compargs have the responsibility to act as well as a need to prepare. Act to mitigate the adverse
effects of global warming, and the need to prepare for the future impacted by changing climate. That includes
performing risk assessments, developing climate sgigte as well as reporting on the current performance
and on future climate risks through wastablished frameworks such as CDP (formerly Carbon Disclosure
Project) or TCFD (Task Force on Climgltged Financial Disclosures). The goal of the globakktd#er
dialogue was to calesigh methods

The CDP (formerly the Carbon Disclosure Project) is an internationgdrafinorganizationthat runs the

global disclosure system for investors, companies, cities, states and regions to disclose and manage thei
environmental impacts. Its aim is to make environmental reporting and risk management a standard business
practice, driving disclosure, insight, and action towards a sustainable economy. Current areas of focus include
climate change, water and forestsf£2020).

The Task Force on Climd&elated Financial Disclosures (TCFD) is an organization that was established by the
Financial Stability Board with the goal of developing a set of voluntary clirekteed financial risk
disclosures to help identify thinformation needed by investors, lenders, and insurance underwriters to
assess and price climatelated risks and opportunities. The Task Force developed widely adoptable
recommendations on climateelated financial disclosures that are applicable tgaorizations across sectors

and jurisdictions (TCFD2020).

3.2.2.2 Cedesign

In a stakeholder dialog with two multinational companitgo PUNI methods were etesignedor optimally
providing information from multtmodel ensemble®n freshwaterrelated clmate change risks including
their uncertainties to worldwvide operating industries, in order to increase availability and applicability of
salient and credible information. Therefore, research on industry needs and state of the art as well as
interviews and workshops with worldvide operating industries were facilitated to bridge the worlds of
science and industry.

3.2.2.3ldentified water-related risks

2,114 companies disclosed their watelated information through CDP in 2018, currently represenbvey

50% of global market capitalization (CDP2018). The number of participants grows every year, across different
programs (climate chage, water and forests)able3 displays the Aist (highest scored) companiasthe
gFGSNI LINEPANI YD tFNIAOALI GAZ2Y 2F a2YS 2F GKS 42 NJ
preliminary identification of waterelated risks industries face, but also highlights the need for robust
methods for conducting waterisk assessmes (CDP2018).
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Table3: Highest scored companiesl{gt) in the water program of the CDP (CDP2018)

ACCIONA S.A.

Ford Motor Company

LG Innotek

Altria Group, Inc.

Galp Energia SA

LIXIL Group Corporation

Asahi Group Holdings, Ltd

Gap Inc.

L'Oréal

AstraZeneca

General Mills Inc.

Metsa Board

Bayer AG

International Flavors

Fragrances Inc.

8

Microsoft Corporation

Braskem S/A

KAO Corporation

Mitsubishi Electric Corporation

Brembo SpA

Kirin Holdings Co Ltd

Nabtesco Corporation

CNHIndustrial NV

Klabin S/A

Stanley Black & Decker, Inc.

CocaCola European Partners

Las Vegas Sands Corporation

Suntory Beverage & Food

Diageo

LG Display

Toyota Industries Corporation

FIRMENICH SA

Using the CDP databds¢he following waterrelatedrisks Table4) and impacts were identified, along with
the primary response to those risks. It can be seen from the initial analysis that-wesderd risks can be
O2YLI yASaQ 2 LIidpaiakaunt that coyiganies KaMhe (i Sy
tools to respond to them and to prepare their adaptation strategies.

RA & NXzLIG A &S

g2

Table4: Water-related risks together with potential impact and response to those risks (CDP2018 and related

individualcompany reports)

Primary risk driver

Primary potential impact

Primary response to risk

Increased water stress

Increased operating costj
Disruption to sales due td
value chain disruption
Reduction or disruption ir
production capacity

Establish sitespecifc
targets

Work with supplier to
engage with local
communities

Secure alternative water
supply

Adopt water efficiency,
water re-use, recycling and

! Based on waterelated information disclosed through CDP by Volkswagen, Bayer, L'Oréal, General Mills Inc., Diageo,
FIRMENICH SA, Gap, International Flavors & Fragrances Inc., Stanley Black & Decker, Inc. in 2018 (CDP2018 and
related individual company reports)
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conservation practices
Water-related capital
expenditure

Supplier diversification

Increased water scarcity Reduction or disruption ir} Increase investment in ney
production capacity technology
Supply chain disruption Detailed diagnostic today
Increased operating costj and future
Alliance for Water Steward
Standard

Water-related capital
expenditure

Drought Redution or disruption in Increase investment in ney
production capacity technology
Increased production Engage with NGOs/specia
costs interest groups

Flooding Supply chain disruption Amend the Business

Continuity Plan

Severe weather events Increased produon Certification, collaborative
costs due to changing actions
input prices from supplien

Declining water quality Increased operating costj Engage with NGOs/specia
interest groups
Alliance for Water Steward

Standard
Inadequate infrastructure Reductionor disruption in Adopt water efficiency,
production capacity water re-use, recycling and

conservation practices

Rationing of municipal Reduction or disruption in Establish sitespecific
water supply production capacity targets
Increased operating costj Increase investment in nev
technology

3.2.2.4Existing tools and methods concerning watezlated risks

Companies report the udef the following tools and methodJ &ble5) to identify and assess wateelated
risks:

2 Based orwater-related information disclosed through CDP by Volkswagen, Bayer, L'Oréal, General Mills Inc., Diageo,
FIRMENICH SA, Gap, International Flavors & Fragrances Inc., Stanley Black & Decker, Inc. in 2018 (DP2018 and related
individual company reports)
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Table5: Waterrelated risks together with potential impact and response to those risks (CDP2018 and related
individual company reports)

WRI Aqueduct IPCC Climate Change Projections
WWFDEG Water Risk Filter Environmental Impact Assessment

Life Cycle Assessment FAO/AQUASTAT

Water Footprint Network Assessment tool Ecolab Water Risk Monetizer

WBCSD Global Water Tool Alliance for Water Stewardship Standard

COSO Enterprise Risk Management Framework| Regional government databases

Maplecroft Gobal Water Security Risk Index Nationatspecific tools or standards
Ceres AquaGauge Internal company methods
ISO 31000 Risk Management Standard External consultants

WRI (World Resources Institute) Aqueduct Water Risk Atlas,-D&G-(World Wide FundrfdNature and
German finance institution (Deutsche Investitionad Entwicklungsgesellschaft)) Water Risk Filter and Life
Cycle Assessment (AWARE (Available WAter REmaining) methodology) were selected for further evaluation
due to their widelyadopted usédy the industry in risk assessments, and due the shared similarities in relation

to the intended purpose of the tools.

WRI Aqueduct Water Risk Atlas is an online tool to access-wed#ted risks. The tool compiles advances in
hydrological modeling, renmtely sensed data, and published data sets into a freely accessible online platform.
Is it primarily gorioritizationtool and should be augmented by local and regional deep dives. The tool covers
physical, regulatory and reputational risks across 13 inoisg\WRI12019).

WWFERDEG Water Risk Filter is an online tool developed by WWF and the German Development Finance
Institution DEG to explore, assess, and respond to water risks. Users can assess basin risks by entering
information on the sectorand locatidn 2 F A& FFLOATtAGASad .| aSR 2y (KS
sets and preselected industry weightings, basin risk scores at the facility and for the entire portfolio are
generated. It covers physical, regulatory and reputational risks actsgl®ators (WWF2020).

The AWARE method is commonly used for assessing water scarcity as one of the results of the application of
the life cycle assessment (LCA) method. AWARE is used as a midpoint indicator related to water use and
representing the relave Available WAter REmaining per area in a watershed, after the demand of humans
and aquatic ecosystems has been met (AWARE2019).

3.2.2.5 Utilization methods

To address the variation of challenges faced by different stakeholders, two complementakymetiihds
to present the data from the mukinodel ensemble were developed:
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1
1

Method 1: Production Site Granular Level Risk Assessment
Method 2: HighLevel Supply/Value Chain Risk Assessment

Both methods were presented and discussed in the first phasetfS &G 1 SK2f RSNJ RALF f 23
leading companies in the automotive and in the chemical se&ectfon 3.2.2.8

3.2.2.6PUNI Method 1: Production Site Granular Level Risk Assessment

T

T

Goal the selected indicators and diagnostics of Methodhallsdirectly support the definition of
decisions and action.

Applicability: this method is applicable for all companies operating their own production sites
worldwide. It is particularly relevant for companies operating at an early stage of globalcheins

¢ for example, those companies producing commaodities such as in the chemical or metal and mining
industry. In such settings water risk assessments at produsitenlevel is common practice.
However, there is currently a lack of a) globally cdesisdata including uncertainties for future
water hazards and b) linking water hazards to climate adaptation analysis.

Desktop researchindustry preassessment suggested an alignment between the industry needs and
the originally proposed G®IICC indicats and diagnostics.

3.2.2.7PUNI Method 2: High Level Supply/Value Chain Risk Assessment

1

GoaY ARSYUGAFAOFIGAZ2Y 2F YIAY NAR&a1& YR LINKA2NRAGA
chains

Applicability: this method is applicable for all compan24JS NI G Ay 3 | i -wideSupphSy RE
chains, such as OEMs (e.g. automotive industry) and consumer goods (e.g. apparel industry). It is
particularly relevant for companies with complex supplier networks, where-leigl screening
assessments are erded in order to prioritize actions within the supply chain. Those could include
informing selected suppliers and requesting more detailed analysisthéthim to define concrete
actions.

Desktop researchthe need for additional higlevel indicators wa established. Those indicators
include water stress and water scarcity, which are common in the life cycle assessment method,
widely applied by globally operating companies.

3.2.2.8 Extended interviews

An integral part of the calesign efforts was thelgbal stakeholder dialogue, during which interviews with
global companies were conducted. The purpose of the interviews was to:

a.

build on the industry preassessment conducted in the earlier stages and further explore (i) the
water-related risks that compaas face, (ii) future assessment needs, (iii) tools, methods and data
currently used by industry for higlevel strategic water risk assessment;

map the findings against possible project outcomes;

confirm relevance of PUNI Methods 1 and 2.
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3.2.2.90utcome of the stakeholder dialogue

The main outcomes of the interviews included further insight into the current practices by globally operating
companies in relation to water challenges and climate change adaptation; confirmation of the importance of
the propo®d indicators and diagnostics; confirmation of the relevance of two PUNI methods proposed; and
specification of modelling requirements for users and modelers.

The global stakeholder dialogue confirmed the need for globally consistent data includingaimtestof
future water hazards, and for linking water hazards to climate adaptation analysis. The PUNI methods
presented to the companies were perceived as relevant and important, and as a result these indicators were
added to the portal:

1 Water scarcitylfased on Mesfin2016)

1 Water stress (based on Mesfin2016)

1 Water availability

The brief comparison of CRICC to the other three selected tools used by the industry, focusing on the
added value that C®IICC could provide, illustrates the increase in knowdettgough the projectWRI
Aqueduct Water Risk Atlas, WMIEEG Water Risk Filter and Life Cycle Assessment (AWARE methodology)
and the C&GMICC portal attempt to assist with identifying current and future watdated risks, but differ

in terms of indicatos covered, underlying models, timeframe, and among other asp@f&.Aqueduct and
WWFRDEG Water Risk Filter cover the period until 2040 and 2050, respectively,yiedeimcrements, while
COMICCMME dataprovides data up until 2099 with fiwgear intevals. The longer time period is intended

to assist companies with lortgrm climate adaptation preparedness.

In terms of output variables as far as physical risks are concerned, both WRI Aqueduct aridB@Wrater

Risk Filter provide future projections fdour variables, whereas CRAICCMME dataprovides future
projections for alll5 variables covered by the project. A broad coverage of indicators is intended to help
global stakeholders assess climate charglated impact on water resources against mugipisk criteria. It

is also intended to provide the right level of granularity and transparency, and support companies in
deployment of the PUNI methods.

Regarding the RCPs for which future projections are provided, WRI Aqueduct centers the models around
RCP4.5 and RCP8.5, while WG Water Risk Filter modelling is in line with RCP4.5 and RCRBIICCO
MME datg on the other hand, incorporates all original RGARCP2.6, RCP4.5, RCP6, and RCP8.5 for an
increased variety of future projection options.idtsupposed to help companies prepare for a varied degree

of future scenarios.

A powerful addition offered by GMICCportal is the inclusion of uncertainties in future projections. As
opposed to the median, the outputs on the @OCC portal include undainty ranges. This is intended to

help the users assess their risks on a multiple scenario basis and prepare action plans reflecting the
uncertainty associated with future projectionB addition, the uncertainty ranges enable companies to
develop worstand bestcase scenarios with the risks assessments.

In life cycle assessment (AWARE methodoladngracterizatiorfactors are derived using water availability
and water demand. While being a useful concept, it is somewhat limited in that future clonatgerelated
projections are not taken into account. @MCOVIME dataaims to address this gap, basing output variables
on both hydrological and climate change models. Since AVeA&RECcterizatiorfactors are calculated using
a number of variables thatra also covered by CRICCMME data (such as runoff, precipitation,

evapotranspiration), there is scope for the AWARE methadtitize the COGMICC outputs.
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Appendix

Appendix A: Specification of the muitnodel ensemble (MME) runs

Land mask used
WATCHCRJ land mask and DDM30 drainage map, consistent with ISIMIP simulations.
Climate input data

Climate input data based on ISIMIP2b is used to force the hydrologic models.
Biasadjusted to the EWEMBIhitp://doi.org/10.5880/pik.2016.00) data set at daily
temporal and 0.5° horizontal resolution using updated versions of Fask methods (see
biascorrection Fact Sheet atww.isimip.organd Lange (2018) for methods description and
further references).

y Daily time step, 0.5° horizontal resolution

Yy Historical (18622005) and future (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) conditions
provided based on CMIP5 output of:

IPSECM5ALR 15
GMBLESM2M
MIROC5
HadGEMZES
Landuse input data
Landuse (like human influences below) is kept at 2005 levels.
Vegetation is kept at what it is (except in LPJImL).
Human influences:

Human influences should be fixed at 2005 leveBO0bsog, in all simulatios:
Reservoirs, dams, water abstraction, irrigation water extraction are simulated consistently
to ISIMIP: see section 2.5 in ISIMIP2b modelling protocol

Lake specifications

Consistent with ISIMIP2b simulations: see section 2.7 in ISIMIP2b modelling protoco
(https://www.isimip.org/documents/345/ISIMIP2b_protocol_AllSectors_fxQe9G5.pdf)
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